Joemon M. Jose
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joemon M. Jose.
international acm sigir conference on research and development in information retrieval | 2009
Ioannis Konstas; Vassilios Stathopoulos; Joemon M. Jose
Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimedia-enriched data that are enhanced both by explicit user-provided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a user-based collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.
Journal of the Association for Information Science and Technology | 2005
Anastasios Tombros; Ian Ruthven; Joemon M. Jose
In this article, we investigate the criteria used by online searchers when assessing the relevance of Web pages for information-seeking tasks. Twenty-four participants were given three tasks each, and they indicated the features of Web pages that they used when deciding about the usefulness of the pages in relation to the tasks. These tasks were presented within the context of a simulated work-task situation. We investigated the relative utility of features identified by participants (Web page content, structure, and quality) and how the importance of these features is affected by the type of information-seeking task performed and the stage of the search. The results of this study provide a set of criteria used by searchers to decide about the utility of Web pages for different types of tasks. Such criteria can have implications for the design of systems that use or recommend Web pages.
Journal of Web Semantics | 2011
Iván Cantador; Ioannis Konstas; Joemon M. Jose
In social tagging systems, users have different purposes when they annotate items. Tags not only depict the content of the annotated items, for example by listing the objects that appear in a photo, or express contextual information about the items, for example by providing the location or the time in which a photo was taken, but also describe subjective qualities and opinions about the items, or can be related to organisational aspects, such as self-references and personal tasks. Current folksonomy-based search and recommendation models exploit the social tag space as a whole to retrieve those items relevant to a tag-based query or user profile, and do not take into consideration the purposes of tags. We hypothesise that a significant percentage of tags are noisy for content retrieval, and believe that the distinction of the personal intentions underlying the tags may be beneficial to improve the accuracy of search and recommendation processes. We present a mechanism to automatically filter and classify raw tags in a set of purpose-oriented categories. Our approach finds the underlying meanings (concepts) of the tags, mapping them to semantic entities belonging to external knowledge bases, namely WordNet and Wikipedia, through the exploitation of ontologies created within the W3C Linking Open Data initiative. The obtained concepts are then transformed into semantic classes that can be uniquely assigned to content- and context-based categories. The identification of subjective and organisational tags is based on natural language processing heuristics. We collected a representative dataset from Flickr social tagging system, and conducted an empirical study to categorise real tagging data, and evaluate whether the resultant tags categories really benefit a recommendation model using the Random Walk with Restarts method. The results show that content- and context-based tags are considered superior to subjective and organisational tags, achieving equivalent performance to using the whole tag space.
Information Processing and Management | 2003
Ryen W. White; Joemon M. Jose; Ian Ruthven
A fuel injection pump comprises a housing a pump assembly mounted within the housing and an annular armature slidable within a bore defined in the housing. The armature is connected to a moving part of the pump assembly and located in the annular space between the pump assembly and the armature is an annular field assembly including a member which is supported by an end closure for the housing. The field assembly carries a winding which when energized effects movement of the armature and movement of the moving part of the pump assembly thereby to displace fuel through an outlet.
european conference on information retrieval | 2010
David Vallet; Iván Cantador; Joemon M. Jose
Web search personalization aims to adapt search results to a user based on his tastes, interests and needs. The way in which such personal preferences are captured, modeled and exploited distinguishes the different personalization strategies. In this paper, we propose to represent a user profile in terms of social tags, manually provided by users in folksonomy systems to describe, categorize and organize items of interest, and investigate a number of novel techniques that exploit the users’ social tags to re-rank results obtained with a Web search engine. An evaluation conducted with a dataset from Delicious social bookmarking system shows that our personalization techniques clearly outperform state of the art approaches.
european conference on information retrieval | 2002
Ryen W. White; Ian Ruthven; Joemon M. Jose
In this paper we report on the application of two contrasting types of relevance feedback for web retrieval. We compare two systems; one using explicit relevance feedback (where searchers explicitly have to mark documents relevant) and one using implicit relevance feedback (where the system endeavours to estimate relevance by mining the searchers interaction). The feedback is used to update the display according to the users interaction. Our research focuses on the degree to which implicit evidence of document relevance can be substituted for explicit evidence. We examine the two variations in terms of both user opinion and search effectiveness.
ACM Transactions on Information Systems | 2005
Ryen W. White; Ian Ruthven; Joemon M. Jose; C. J. van Rijsbergen
In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffreys rule of conditioning outperformed other models under investigation.
international acm sigir conference on research and development in information retrieval | 2005
Ryen W. White; Ian Ruthven; Joemon M. Jose
Implicit relevance feedback (IRF) is the process by which a search system unobtrusively gathers evidence on searcher interests from their interaction with the system. IRF is a new method of gathering information on user interest and, if IRF is to be used in operational IR systems, it is important to establish when it performs well and when it performs poorly. In this paper we investigate how the use and effectiveness of IRF is affected by three factors: search task complexity, the search experience of the user and the stage in the search. Our findings suggest that all three of these factors contribute to the utility of IRF.
international acm sigir conference on research and development in information retrieval | 2008
Ioannis Arapakis; Joemon M. Jose; Philip D. Gray
User feedback is considered to be a critical element in the information seeking process, especially in relation to relevance assessment. Current feedback techniques determine content relevance with respect to the cognitive and situational levels of interaction that occurs between the user and the retrieval system. However, apart from real-life problems and information objects, users interact with intentions, motivations and feelings, which can be seen as critical aspects of cognition and decision-making. The study presented in this paper serves as a starting point to the exploration of the role of emotions in the information seeking process. Results show that the latter not only interweave with different physiological, psychological and cognitive processes, but also form distinctive patterns, according to specific task, and according to specific user.
conference on information and knowledge management | 2013
Andrew James McMinn; Yashar Moshfeghi; Joemon M. Jose
Despite the popularity of Twitter for research, there are very few publicly available corpora, and those which are available are either too small or unsuitable for tasks such as event detection. This is partially due to a number of issues associated with the creation of Twitter corpora, including restrictions on the distribution of the tweets and the difficultly of creating relevance judgements at such a large scale. The difficulty of creating relevance judgements for the task of event detection is further hampered by ambiguity in the definition of event. In this paper, we propose a methodology for the creation of an event detection corpus. Specifically, we first create a new corpus that covers a period of 4 weeks and contains over 120 million tweets, which we make available for research. We then propose a definition of event which fits the characteristics of Twitter, and using this definition, we generate a set of relevance judgements aimed specifically at the task of event detection. To do so, we make use of existing state-of-the-art event detection approaches and Wikipedia to generate a set of candidate events with associated tweets. We then use crowdsourcing to gather relevance judgements, and discuss the quality of results, including how we ensured integrity and prevented spam. As a result of this process, along with our Twitter corpus, we release relevance judgements containing over 150,000 tweets, covering more than 500 events, which can be used for the evaluation of event detection approaches.