Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joerg Heineke is active.

Publication


Featured researches published by Joerg Heineke.


Nature Reviews Molecular Cell Biology | 2006

Regulation of cardiac hypertrophy by intracellular signalling pathways.

Joerg Heineke; Jeffery D. Molkentin

The mammalian heart is a dynamic organ that can grow and change to accommodate alterations in its workload. During development and in response to physiological stimuli or pathological insults, the heart undergoes hypertrophic enlargement, which is characterized by an increase in the size of individual cardiac myocytes. Recent findings in genetically modified animal models implicate important intermediate signal-transduction pathways in the coordination of heart growth following physiological and pathological stimulation.


Journal of Clinical Investigation | 2008

Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart

Joerg Heineke; Mannix Auger-Messier; Jian Xu; Toru Oka; Michelle A. Sargent; Allen J. York; Raisa Klevitsky; Sachin S. Vaikunth; Stephen A. Duncan; Bruce J. Aronow; Jeffrey Robbins; Timothy M. Crombleholme; Jeffery D. Molkentin

The transcription factor GATA4 is a critical regulator of cardiac gene expression, modulating cardiomyocyte differentiation and adaptive responses of the adult heart. We report what we believe to be a novel function for GATA4 in murine cardiomyocytes as a nodal regulator of cardiac angiogenesis. Conditional overexpression of GATA4 within adult cardiomyocytes increased myocardial capillary and small conducting vessel densities and increased coronary flow reserve and perfusion-dependent cardiac contractility. Coculture of HUVECs with either GATA4-expressing cardiomyocytes or with myocytes expressing a dominant-negative form of GATA4 enhanced or reduced HUVEC tube formation, respectively. Expression of GATA4 in skeletal muscle by adenoviral gene transfer enhanced capillary densities and hindlimb perfusion following femoral artery ablation. Deletion of Gata4 specifically from cardiomyocytes reduced myocardial capillary density and prevented pressure overload-augmented angiogenesis in vivo. GATA4 induced the angiogenic factor VEGF-A, directly binding the Vegf-A promoter and enhancing transcription. GATA4-overexpressing mice showed increased levels of cardiac VEGF-A, while Gata4-deleted mice demonstrated decreased VEGF-A levels. The induction of HUVEC tube formation in GATA4-overexpressing cocultured myocytes was blocked with a VEGF receptor antagonist. Pressure overload-induced dysfunction in Gata4-deleted hearts was partially rescued by adenoviral gene delivery of VEGF and angiopoietin-1. To our knowledge, these results demonstrate [corrected] a previously unrecognized function for GATA4 as a regulator of cardiac angiogenesis through a nonhypoxic, load, and/or disease-responsive mechanism.


Circulation | 2010

Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure

Joerg Heineke; Mannix Auger-Messier; Jian Xu; Michelle A. Sargent; Allen J. York; Stephen Welle; Jeffery D. Molkentin

Background— Cardiac cachexia is characterized by an exaggerated loss of skeletal muscle, weakness, and exercise intolerance, although the cause of these effects remains unknown. Here, we hypothesized that the heart functions as an endocrine organ in promoting systemic cachexia by secreting peptide factors such as myostatin. Myostatin is a cytokine of the transforming growth factor-&bgr; superfamily that is known to control muscle wasting. Methods and Results— We used a Cre/loxP system to ablate myostatin (Mstn gene) expression in a cell type–specific manner. As expected, elimination of Mstn selectively in skeletal muscle with a myosin light chain 1f (MLC1f)-cre allele induced robust hypertrophy in all skeletal muscle. However, heart-specific deletion of Mstn with an Nkx2.5-cre allele did not alter baseline heart size or secondarily affect skeletal muscle size, but the characteristic wasting and atrophy of skeletal muscle that typify heart failure were not observed in these heart-specific null mice, indicating that myocardial myostatin expression controls muscle atrophy in heart failure. Indeed, myostatin levels in the plasma were significantly increased in wild-type mice subjected to pressure overload–induced cardiac hypertrophy but not in Mstn heart-specific deleted mice. Moreover, cardiac-specific overexpression of myostatin, which increased circulating levels of myostatin by 3- to 4-fold, caused a reduction in weight of the quadriceps, gastrocnemius, soleus, and even the heart itself. Finally, to investigate myostatin as a potential therapeutic target for the treatment of muscle wasting in heart failure, we infused a myostatin blocking antibody (JA-16), which promoted greater maintenance of muscle mass in heart failure. Conclusions— Myostatin released from cardiomyocytes induces skeletal muscle wasting in heart failure. Targeted inhibition of myostatin in cardiac cachexia might be a therapeutic option in the future.


Nature Medicine | 2010

CIB1 is a Regulator of Pathological Cardiac Hypertrophy

Joerg Heineke; Mannix Auger-Messier; Robert N. Correll; Jian Xu; Matthew J. Benard; Weiping Yuan; Helmut Drexler; Leslie V. Parise; Jeffery D. Molkentin

Hypertrophic heart disease is a leading health problem in Western countries. Here we identified the small EF hand domain–containing protein Ca2+ and integrin–binding protein-1 (CIB1) in a screen for previously unknown regulators of cardiomyocyte hypertrophy. Yeast two-hybrid screening for CIB1-interacting partners identified a related EF hand domain–containing protein, calcineurin B, the regulatory subunit of the prohypertrophic protein phosphatase calcineurin. CIB1 localizes primarily to the sarcolemma in mouse and human myocardium, where it anchors calcineurin to control its activation in coordination with the L-type Ca2+ channel. CIB1 protein amounts and membrane association were enhanced in cardiac pathological hypertrophy, but not in physiological hypertrophy. Consistent with these observations, Cib1-deleted mice showed a marked reduction in myocardial hypertrophy, fibrosis, cardiac dysfunction and calcineurin–nuclear factor of activated T cells (NFAT) activity after pressure overload, whereas the degree of physiologic hypertrophy after swimming exercise was not altered. Transgenic mice with inducible and cardiac-specific overexpression of CIB1 showed enhanced cardiac hypertrophy in response to pressure overload or calcineurin signaling. Moreover, mice lacking Ppp3cb (encoding calcineurin A, β isozyme) showed no enhancement in cardiac hypertrophy associated with CIB1 overexpression. Thus, CIB1 functions as a previously undescribed regulator of cardiac hypertrophy through its ability to regulate the association of calcineurin with the sarcolemma and its activation.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting.

Astrid Breitbart; Mannix Auger-Messier; Jeffery D. Molkentin; Joerg Heineke

A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.


Journal of Molecular and Cellular Cardiology | 2010

Calcineurin protects the heart in a murine model of dilated cardiomyopathy

Joerg Heineke; Kai C. Wollert; Hanna Osinska; Michelle A. Sargent; Allen J. York; Jeffrey Robbins; Jeffery D. Molkentin

Dilated cardiomyopathy (DCM) is a relatively common disease with a poor prognosis. Given that the only meaningful treatment for DCM is cardiac transplantation, investigators have explored the underlying molecular mechanisms of this disease in the hopes of identifying novel therapeutic targets. One such target is the serine-threonine phosphatase calcineurin, a Ca2+-activated signaling factor that is known to regulate the cardiac hypertrophic program, although its role in DCM is currently unknown. In order to address this issue, we crossed muscle lim protein (MLP) knock-out mice-a murine model of DCM-with calcineurin A beta ko mice, which lack the stress responsive isoform of calcineurin that critically regulates the cardiac hypertrophic response. Interestingly, the majority (73%) of the MLP/calcineurin A beta double knock-out mice died within 20 days of birth with signs of cardiomyopathy. Ultrastructural examination revealed enhanced cardiomyocyte apoptosis and necrosis in the postnatal myocardium of these mice. The MLP/calcineurin A beta double knock-out mice that survived until adulthood showed reduced left ventricular function, enhanced apoptotic and necrotic cardiomyocyte death and augmented myocardial fibrosis compared to various control groups. Antithetically, mild overexpression of activated calcineurin in the mouse heart improved function and adverse remodeling in MLP knock-out mice. Collectively, these results reveal an important and previously unrecognized protective function of endogenous myocardial calcineurin in a mouse model of dilated cardiomyopathy.


Journal of Biological Chemistry | 2011

GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling

Natali Froese; Badder Kattih; Astrid Breitbart; Andrea Grund; Robert Geffers; Jeffery D. Molkentin; Andreas Kispert; Kai C. Wollert; Helmut Drexler; Joerg Heineke

Understanding the transcriptional regulation of angiogenesis could lead to the identification of novel therapeutic targets. We showed here that the transcription factor GATA6 is expressed in different human primary endothelial cells as well as in vascular endothelial cells of mice in vivo. Activation of endothelial cells was associated with GATA6 nuclear translocation, chromatin binding, and enhanced GATA6-dependent transcriptional activation. siRNA-mediated down-regulation of GATA6 after growth factor stimulation led to a dramatically reduced capacity of macro- and microvascular endothelial cells to proliferate, migrate, or form capillary-like structures on Matrigel. Adenoviral overexpression of GATA6 in turn enhanced angiogenic function, especially in cardiac endothelial microvascular cells. Furthermore, GATA6 protected endothelial cells from undergoing apoptosis during growth factor deprivation. Mechanistically, down-regulation of GATA6 in endothelial cells led to increased expression of transforming growth factor (TGF) β1 and TGFβ2, whereas enhanced GATA6 expression, accordingly, suppressed Tgfb1 promoter activity. High TGFβ1/β2 expression in GATA6-depleted endothelial cells increased the activation of the activin receptor-like kinase 5 (ALK5) and SMAD2, and suppression of this signaling axis by TGFβ neutralizing antibody or ALK5 inhibition restored angiogenic function and survival in endothelial cells with reduced GATA6 expression. Together, these findings indicate that GATA6 plays a crucial role for endothelial cell function and survival, at least in part, by suppressing autocrine TGFβ expression and ALK5-dependent signaling.


Circulation | 2016

Glycoproteomics reveals decorin peptides with anti-myostatin activity in human atrial fibrillation

Javier Barallobre-Barreiro; Shashi Kumar Gupta; Anna Zoccarato; Rika Kitazume-Taneike; Marika Fava; Xiaoke Yin; Tessa Werner; Marc N. Hirt; Anna Zampetaki; Alessandro Viviano; Mei Chong; Marshall W. Bern; Antonios Kourliouros; Nieves Doménech; Peter Willeit; Ajay M. Shah; Marjan Jahangiri; Liliana Schaefer; Jens W. Fischer; Renato V. Iozzo; Rosa Viner; Thomas Thum; Joerg Heineke; Antoine Kichler; Kinya Otsu; Manuel Mayr

Background: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Methods: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. Results: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. Conclusions: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.


Cardiovascular Research | 2018

A gene therapeutic approach to inhibit calcium and integrin binding protein 1 ameliorates maladaptive remodelling in pressure overload

Andrea Grund; Malgorzata Szaroszyk; Janina K Döppner; Mona Malek Mohammadi; Badder Kattih; Mortimer Korf-Klingebiel; Anna Gigina; Michaela Scherr; George Kensah; Monica Jara-Avaca; Ina Gruh; Ulrich Martin; Kai C. Wollert; Antje Gohla; Hugo A. Katus; Oliver Müller; Johann Bauersachs; Joerg Heineke

AimsnChronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22u2009kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis.nnnMethods and resultsnAmong three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10u2009weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1.nnnConclusionsnInhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc

Joerg Heineke; Hartmut Ruetten; Christian Willenbockel; Sandra C. Gross; Marian Naguib; Arnd Schaefer; Tibor Kempf; Denise Hilfiker-Kleiner; Pico Caroni; Theresia Kraft; Robert A. Kaiser; Jeffery D. Molkentin; Helmut Drexler; Kai C. Wollert

Collaboration


Dive into the Joerg Heineke's collaboration.

Top Co-Authors

Avatar

Jeffery D. Molkentin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen J. York

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jian Xu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Sargent

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Bauersachs

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Robbins

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge