Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joerg Huelsken is active.

Publication


Featured researches published by Joerg Huelsken.


Cell | 2001

β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin

Joerg Huelsken; Regina Vogel; Bettina Erdmann; George Cotsarelis; Walter Birchmeier

beta-Catenin is an essential molecule in Wnt/wingless signaling, which controls decisive steps in embryogenesis. To study the role of beta-catenin in skin development, we introduced a conditional mutation of the gene in the epidermis and hair follicles using Cre/loxP technology. When beta-catenin is mutated during embryogenesis, formation of placodes that generate hair follicles is blocked. We show that beta-catenin is required genetically downstream of tabby/downless and upstream of bmp and shh in placode formation. If beta-catenin is deleted after hair follicles have formed, hair is completely lost after the first hair cycle. Further analysis demonstrates that beta-catenin is essential for fate decisions of skin stem cells: in the absence of beta-catenin, stem cells fail to differentiate into follicular keratinocytes, but instead adopt an epidermal fate.


Nature | 2012

Interactions between cancer stem cells and their niche govern metastatic colonization

Ilaria Malanchi; Albert Santamaria-Martínez; Evelyn Susanto; Hong Peng; Hans-Anton Lehr; Jean-François Delaloye; Joerg Huelsken

Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed ‘metastatic colonization’, is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.


Current Opinion in Genetics & Development | 2001

NEW ASPECTS OF WNT SIGNALING PATHWAYS IN HIGHER VERTEBRATES

Joerg Huelsken; Walter Birchmeier

The development of tissues and organs in embryos is controlled by an interplay of several signaling pathways that cross-talk to provide positional information and induce cell fate specification. One of the major signaling systems is the Wnt pathway which was recently shown to split into several intracellular branches which regulate multiple cellular functions. In the present review, we discuss novel members and their role in the diversification of the Wnt pathway. Many of these components were studied in model organisms such as C.elegans, Drosophila and Xenopus. Here we focus on recent studies of mutant phenotypes in Mouse and Zebrafish which implicate members of the Wnt pathway in processes such as axis and mesoderm formation, initiation of organ development and stem cell differentiation.


Nature | 2008

Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling

Ilaria Malanchi; Héctor Peinado; Deepika Kassen; Thomas Hussenet; Daniel Metzger; Pierre Chambon; Marcel Huber; Daniel Hohl; Amparo Cano; Walter Birchmeier; Joerg Huelsken

Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe β-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the β-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased β-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/β-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.


Nature Immunology | 2006

Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation

Marina Scheller; Joerg Huelsken; Frank Rosenbauer; Makoto M. Taketo; Walter Birchmeier; Daniel G. Tenen; Achim Leutz

Gain of Wnt signaling through β-catenin has been ascribed a critical function in the stimulation of hematopoietic stem cell self-renewal, whereas loss of β-catenin is reportedly dispensable for hematopoiesis. Here we have used conditional mouse genetics and transplantation assays to demonstrate that constitutive activation of β-catenin blocked multilineage differentiation, leading to the death of mice. Blood cell depletion was accompanied by failure of hematopoietic stem cells to repopulate irradiated hosts and to differentiate into mature cells. Activation of β-catenin enforced cell cycle entry of hematopoietic stem cells, thus leading to exhaustion of the long-term stem cell pool. Our data suggest that fine-tuned Wnt stimulation is essential for hematopoiesis and is thus critical for therapeutic hematopoietic stem cell population expansion.


Neuron | 2003

Role of β-catenin in synaptic vesicle localization and presynaptic assembly

Shernaz X. Bamji; Kazuhiro Shimazu; Nikole E. Kimes; Joerg Huelsken; Walter Birchmeier; Bai Lu; Louis F. Reichardt

Cadherins and catenins are thought to promote adhesion between pre and postsynaptic elements in the brain. Here we show a role for beta-catenin in localizing the reserved pool of vesicles at presynaptic sites. Deletion of beta-catenin in hippocampal pyramidal neurons in vivo resulted in a reduction in the number of reserved pool vesicles per synapse and an impaired response to prolonged repetitive stimulation. This corresponded to a dispersion of vesicles along the axon in cultured neurons. Interestingly, these effects are not due to beta-catenins involvement in cadherin-mediated adhesion or wnt signaling. Instead, beta-catenin modulates vesicle localization via its PDZ binding domain to recruit PDZ proteins such as Veli to cadherin at synapses. This study defines a specific role for cadherins and catenins in synapse organization beyond their roles in mediating cell adhesion.


Journal of Biological Chemistry | 2003

β-Catenin Is Required for Specification of Proximal/Distal Cell Fate during Lung Morphogenesis

Michael Mucenski; Susan E. Wert; Jennifer M. Nation; David E. Loudy; Joerg Huelsken; Walter Birchmeier; Edward E. Morrisey; Jeffrey A. Whitsett

The lungs are divided, both structurally and functionally, into two distinct components, the proximal airways, which conduct air, and the peripheral airways, which mediate gas exchange. The mechanisms that control the specification of these two structures during lung development are currently unknown. Here we show that β-catenin signaling is required for the formation of the distal, but not the proximal, airways. When the gene for β-catenin was conditionally excised in epithelial cells of the developing mouse lung prior to embryonic day 14.5, the proximal lung tubules grew and differentiated appropriately. The mice, however, died at birth because of respiratory failure. Analysis of the lungs by in situ hybridization and immunohistochemistry, using molecular markers of the epithelial and mesenchymal components of both proximal and peripheral airways, showed that the lungs were composed primarily of proximal airways. These observations establish, for the first time, both the sites and timing of specification of the proximal and peripheral airways in the developing lung, and that β-catenin is one of the essential components of this specification.


Journal of Cell Biology | 2004

Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation

Katja S. Grossmann; Christine Grund; Joerg Huelsken; Martin Behrend; Bettina Erdmann; Werner W. Franke; Walter Birchmeier

Plakophilins are proteins of the armadillo family that function in embryonic development and in the adult, and when mutated can cause disease. We have ablated the plakophilin 2 gene in mice. The resulting mutant mice exhibit lethal alterations in heart morphogenesis and stability at mid-gestation (E10.5–E11), characterized by reduced trabeculation, disarrayed cytoskeleton, ruptures of cardiac walls, and blood leakage into the pericardiac cavity. In the absence of plakophilin 2, the cytoskeletal linker protein desmoplakin dissociates from the plaques of the adhering junctions that connect the cardiomyocytes and forms granular aggregates in the cytoplasm. By contrast, embryonic epithelia show normal junctions. Thus, we conclude that plakophilin 2 is important for the assembly of junctional proteins and represents an essential morphogenic factor and architectural component of the heart.


PLOS ONE | 2010

SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas.

Thomas Hussenet; Soraya Dali; Julien Exinger; Ben Monga; Bernard Jost; Doulaye Dembélé; Nadine Martinet; Christelle Thibault; Joerg Huelsken; Elisabeth Brambilla; Stanislas du Manoir

Squamous cell carcinoma (SCC) of the lung is a frequent and aggressive cancer type. Gene amplifications, a known activating mechanism of oncogenes, target the 3q26-qter region as one of the most frequently gained/amplified genomic sites in SCC of various types. Here, we used array comparative genomic hybridization to delineate the consensus region of 3q26.3 amplifications in lung SCC. Recurrent amplifications occur in 20% of lung SCC (136 tumors in total) and map to a core region of 2 Mb (Megabases) that encompasses SOX2, a transcription factor gene. Intense SOX2 immunostaining is frequent in nuclei of lung SCC, indicating potential active transcriptional regulation by SOX2. Analyses of the transcriptome of lung SCC, SOX2-overexpressing lung epithelial cells and embryonic stem cells (ESCs) reveal that SOX2 contributes to activate ESC-like phenotypes and provide clues pertaining to the deregulated genes involved in the malignant phenotype. In cell culture experiments, overexpression of SOX2 stimulates cellular migration and anchorage-independent growth while SOX2 knockdown impairs cell growth. Finally, SOX2 over-expression in non-tumorigenic human lung bronchial epithelial cells is tumorigenic in immunocompromised mice. These results indicate that the SOX2 transcription factor, a major regulator of stem cell function, is also an oncogene and a driver gene for the recurrent 3q26.33 amplifications in lung SCC.


Developmental Cell | 2009

Reciprocal Requirements for EDA/EDAR/NF-κB and Wnt/β-Catenin Signaling Pathways in Hair Follicle Induction

Yuhang Zhang; Philip Tomann; Thomas Andl; Natalie M. Gallant; Joerg Huelsken; Boris Jerchow; Walter Birchmeier; Ralf Paus; Stefano Piccolo; Marja L. Mikkola; Edward E. Morrisey; Paul A. Overbeek; Claus Scheidereit; Sarah E. Millar; Ruth Schmidt-Ullrich

Wnt/beta-catenin and NF-kappaB signaling mechanisms provide central controls in development and disease, but how these pathways intersect is unclear. Using hair follicle induction as a model system, we show that patterning of dermal Wnt/beta-catenin signaling requires epithelial beta-catenin activity. We find that Wnt/beta-catenin signaling is absolutely required for NF-kappaB activation, and that Edar is a direct Wnt target gene. Wnt/beta-catenin signaling is initially activated independently of EDA/EDAR/NF-kappaB activity in primary hair follicle primordia. However, Eda/Edar/NF-kappaB signaling is required to refine the pattern of Wnt/beta-catenin activity, and to maintain this activity at later stages of placode development. We show that maintenance of localized expression of Wnt10b and Wnt10a requires NF-kappaB signaling, providing a molecular explanation for the latter observation, and identify Wnt10b as a direct NF-kappaB target. These data reveal a complex interplay and interdependence of Wnt/beta-catenin and EDA/EDAR/NF-kappaB signaling pathways in initiation and maintenance of primary hair follicle placodes.

Collaboration


Dive into the Joerg Huelsken's collaboration.

Top Co-Authors

Avatar

Walter Birchmeier

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Paloma Ordóñez-Morán

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Werner Held

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Santamaria-Martínez

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Erdmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Regina Vogel

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge