Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joeri Van Liefferinge is active.

Publication


Featured researches published by Joeri Van Liefferinge.


The Journal of Neuroscience | 2011

Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility.

Dimitri De Bundel; Anneleen Schallier; Ellen Loyens; Ruani N. Fernando; Hirohisa Miyashita; Joeri Van Liefferinge; Katia Vermoesen; Shiro Bannai; Hideyo Sato; Yvette Michotte; Ilse Smolders; Ann Massie

System xc− exchanges intracellular glutamate for extracellular cystine, giving it a potential role in intracellular glutathione synthesis and nonvesicular glutamate release. We report that mice lacking the specific xCT subunit of system xc− (xCT−/−) do not have a lower hippocampal glutathione content, increased oxidative stress or brain atrophy, nor exacerbated spatial reference memory deficits with aging. Together these results indicate that loss of system xc− does not induce oxidative stress in vivo. Young xCT−/− mice did however display a spatial working memory deficit. Interestingly, we observed significantly lower extracellular hippocampal glutamate concentrations in xCT−/− mice compared to wild-type littermates. Moreover, intrahippocampal perfusion with system xc− inhibitors lowered extracellular glutamate, whereas the system xc− activator N-acetylcysteine elevated extracellular glutamate in the rat hippocampus. This indicates that system xc− may be an interesting target for pathologies associated with excessive extracellular glutamate release in the hippocampus. Correspondingly, xCT deletion in mice elevated the threshold for limbic seizures and abolished the proconvulsive effects of N-acetylcysteine. These novel findings sustain that system xc− is an important source of extracellular glutamate in the hippocampus. System xc− is required for optimal spatial working memory, but its inactivation is clearly beneficial to decrease susceptibility for limbic epileptic seizures.


Frontiers in Cellular Neuroscience | 2013

Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy

Joeri Van Liefferinge; Ann Massie; Jeanelle Portelli; Giuseppe Di Giovanni; Ilse Smolders

The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.


Antioxidants & Redox Signaling | 2014

Phosphoinositide 3-Kinases Upregulate System xc− via Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy

Jan Lewerenz; Paul Baxter; Rebecca Kassubek; Philipp Albrecht; Joeri Van Liefferinge; Mike-Andrew Westhoff; Marc-Eric Halatsch; Georg Karpel-Massler; Paul J. Meakin; John D. Hayes; Eleonora Aronica; Ilse Smolders; Albert C. Ludolph; Axel Methner; Marcus Conrad; Ann Massie; Giles E. Hardingham; Pamela Maher

AIMS Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc(-) imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc(-) and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. RESULTS PI3Ks induce system xc(-) through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. INNOVATION Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc(-). Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. CONCLUSION PI3K-regulated system xc(-) activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.


Frontiers in Behavioral Neuroscience | 2015

Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

Eduard Bentea; Anke Van der Perren; Joeri Van Liefferinge; Anissa El Arfani; Giulia Albertini; Thomas Demuyser; Ellen Merckx; Yvette Michotte; Ilse Smolders; Veerle Baekelandt; Ann Massie

Parkinsons disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinsons disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinsons disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinsons disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinsons disease in pre-clinical research and validation of therapeutic targets.


Journal of Chromatography A | 2014

Improved sensitivity of the nano ultra-high performance liquid chromatography-tandem mass spectrometric analysis of low-concentrated neuropeptides by reducing aspecific adsorption and optimizing the injection solvent

Katrien Maes; Joeri Van Liefferinge; Johan Viaene; Jolien Van Schoors; Yannick Van Wanseele; Guillaume Béchade; Erin E. Chambers; Hugo Morren; Yvette Michotte; Yvan Vander Heyden; Jan Claereboudt; Ilse Smolders; Ann Van Eeckhaut

Obtaining maximal sensitivity of nano UHPLC-MS/MS methods is primordial to quantify picomolar concentrations of neuropeptides in microdialysis samples. Since aspecific adsorption of peptides to Eppendorf tubes, pipette tips and UHPLC vials is detrimental for method sensitivity, a strategy is presented to reduce adsorption of these peptides during standard preparation. Within this respect, all procedural steps from dissolution of the lyophilized powder until the injection of the sample onto the system are investigated. Two peptides of the neuromedin family, i.e. neuromedin B and neuromedin N, and a neuromedin N-related neuropeptide, neurotensin, are evaluated. The first part of this study outlines a number of parameters which are known to affect peptide solubility. The main focus of the second part involves the optimization of the sample composition in the UHPLC vial by using design of experiments. Contradictory findings are observed concerning the influence of acetonitrile, salts and matrix components. They are found important for injection of the peptides into the system, but crucially need to be excluded from the dilution solvent. Furthermore, the type of surface material, temperature and the pipetting protocol considerably affect the adsorption phenomenon. Statistical analysis on the results of the central composite design reveals that the highest peptide responses are obtained with the injection solvent consisting of 13.1% V/V ACN and 4.4% V/V FA. This aspect of the optimization strategy can be identified as the main contributor to the gain in method sensitivity. Since the reduction of peptide adsorption and the optimization of the injection solvent resulted in a clear and quantifiable signal of the three peptides, optimization of both issues should be considered in the early stage of method development, in particular when the analysis of low-concentration peptide solutions is envisaged.


Physiology & Behavior | 2016

In-depth behavioral characterization of the corticosterone mouse model and the critical involvement of housing conditions

Thomas Demuyser; Lauren Deneyer; Eduard Bentea; Giulia Albertini; Joeri Van Liefferinge; Ellen Merckx; An De Prins; Dimitri De Bundel; Ann Massie; Ilse Smolders

Depression and anxiety are disabling and highly prevalent psychiatric disorders. To better understand the neurobiological basis of mood and anxiety disorders, relevant animal models are needed. The corticosterone mouse model is frequently used to study depression. Chronic stress and accompanying glucocorticoid elevation causes pathological changes in the central nervous system, which are related to psychiatric symptoms. Exogenous administration of corticosterone is therefore often used to induce depressive-like behavior in mice and in some cases also features of anxiety-like behavior are shown. However, a thorough characterization of this model has never been conducted and housing conditions of the used subjects often differ between the implemented protocols. We chronically administered a subcutaneous corticosterone bolus injection to single- and group-housed mice, and we subsequently evaluated the face validity of this model by performing a battery of behavioral tests (forced swim test, mouse-tail suspension test, saccharin intake test, novelty-suppressed feeding test, elevated plus maze, light/dark paradigm and open field test). Our results show that corticosterone treatment has a substantial overall effect on depressive-like behavior. Increases in anxiety-like behavior on the other hand are mainly seen in single housed animals, independent of treatment. The current study therefore does not only show a detailed behavioral characterization of the corticosterone mouse model, but furthermore also elucidates the critical influence of housing conditions on the behavioral outcome in this model.


Bioanalysis | 2015

An ultrasensitive nano UHPLC-ESI-MS/MS method for the quantification of three neuromedin-like peptides in microdialysates

Katrien Maes; Guillaume Béchade; Jolien Van Schoors; Yannick Van Wanseele; Joeri Van Liefferinge; Yvette Michotte; Stephanie N Harden; Erin E. Chambers; Jan Claereboudt; Ilse Smolders; Ann Van Eeckhaut

AIM An ultrasensitive nano UHPLC-ESI-MS/MS method is developed to simultaneously monitor three low-concentration neuromedin-like peptides in microdialysates. RESULTS Peptide preconcentration and sample desalting is performed online on a trap column. A shallow gradient slope at 300 nl/min on the analytical column maintained at 35°C, followed by two saw-tooth column wash cycles, results in the highest sensitivity and the lowest carryover. The validated method allows the accurate and precise quantification of 0.5 pM neurotensin and neuromedin N (2.5 amol on column), and of 3.0 pM neuromedin B (15.0 amol on column) in in vivo microdialysates without the use of internal standards. CONCLUSION The assay is an important tool for elucidating the role of these neuromedin-like peptides in the pathophysiology of neurological disorders.


The Journal of Comparative Neurology | 2016

Comparative analysis of antibodies to xCT (Slc7a11): Forewarned is forearmed.

Joeri Van Liefferinge; Eduard Bentea; Thomas Demuyser; Giulia Albertini; Virginie Follin-Arbelet; Silvia Holmseth; Ellen Merckx; Hideyo Sato; Joeri L. Aerts; Ilse Smolders; Lutgarde Arckens; Niels C. Danbolt; Ann Massie

The cystine/glutamate antiporter or system Xc− exchanges cystine for glutamate, thereby supporting intracellular glutathione synthesis and nonvesicular glutamate release. The role of system Xc− in neurological disorders can be dual and remains a matter of debate. One important reason for the contradictory findings that have been reported to date is the use of nonspecific anti‐xCT (the specific subunit of system Xc− ) antibodies. Often studies rely on the predicted molecular weight of 55.5 kDa to identify xCT on Western blots. However, using brain extracts from xCT knockout (xCT−/−) mice as negative controls, we show that xCT migrates as a 35‐kDa protein. Misinterpretation of immunoblots leads to incorrect assessment of antibody specificity and thereby to erroneous data interpretation. Here we have verified the specificity of most commonly used commercial and some in‐house‐developed anti‐xCT antibodies by comparing their immunoreactivity in brain tissue of xCT+/+ and xCT−/− mice by Western blotting and immunohistochemistry. The Western blot screening results demonstrate that antibody specificity not only differs between batches produced by immunizing different rabbits with the same antigen but also between bleedings of the same rabbit. Moreover, distinct immunohistochemical protocols have been tested for all the anti‐xCT antibodies that were specific on Western blots in order to obtain a specific immunolabeling. Only one of our in‐house‐developed antibodies could reveal specific xCT labeling and exclusively on acetone‐postfixed cryosections. Using this approach, we observed xCT protein expression throughout the mouse forebrain, including cortex, striatum, hippocampus, midbrain, thalamus, and amygdala, with greatest expression in regions facing the cerebrospinal fluid and meninges. J. Comp. Neurol. 524:1015–1032, 2016.


Neuroscience Letters | 2015

Altered vesicular glutamate transporter expression in human temporal lobe epilepsy with hippocampal sclerosis.

Joeri Van Liefferinge; Cathy J. Jensen; Giulia Albertini; Eduard Bentea; Thomas Demuyser; Ellen Merckx; Eleonora Aronica; Ilse Smolders; Ann Massie

Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study, we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS), International League Against Epilepsy type 1 (ILAE type 1) compared to autopsy controls, using quantitative polymerase chain reaction and semi-quantitative western blotting. mRNA expression levels of the VGLUTs are unaffected in hippocampal epileptic tissue compared to autopsy controls. At the protein level, VGLUT1 expression remains unaltered, while VGLUT2 is significantly decreased and VGLUT3 protein is significantly increased in hippocampal biopsies from TLE patients compared to controls. Our findings at the protein level can be explained by previously described histopathological changes observed in HS. Although VGLUTs have been repeatedly investigated in distinct rodent epilepsy models, their expression levels were hitherto not fully unraveled in the most difficult-to-treat form of epilepsy: TLE with HS ILAE type 1. We here, demonstrate for the first time that VGLUT2 protein expression is significantly decreased and VGLUT3 protein is significantly increased in the hippocampus of patients suffering from TLE with HS ILAE type 1 compared to autopsy controls.


Neuroscience Letters | 2015

MPTP-induced parkinsonism in mice alters striatal and nigral xCT expression but is unaffected by the genetic loss of xCT.

Eduard Bentea; Michelle D. Sconce; Madeline J. Churchill; Joeri Van Liefferinge; Hideyo Sato; Charles K. Meshul; Ann Massie

Nigral cell loss in Parkinsons disease (PD) is associated with disturbed glutathione (GSH) and glutamate levels, leading to oxidative stress and excitotoxicity, respectively. System xc- is a plasma membrane antiporter that couples cystine import (amino acid that can be further used for the synthesis of GSH) with glutamate export to the extracellular environment, and can thus affect both oxidative stress and glutamate excitotoxicity. In the current study, we evaluated the involvement of system xc- in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Our results indicate that the expression of xCT (the specific subunit of system xc-) undergoes region-specific changes in MPTP-treated mice, with increased expression in the striatum, and decreased expression in the substantia nigra. Furthermore, mice lacking xCT were equally sensitive to the neurotoxic effects of MPTP compared to wild-type (WT) mice, as they demonstrate similar decreases in striatal dopamine content, striatal tyrosine hydroxylase (TH) expression, nigral TH immunopositive neurons and forelimb grip strength, five weeks after commencing MPTP treatment. Altogether, our data indicate that progressive lesioning with MPTP induces striatal and nigral dysregulation of system xc-. However, loss of system xc- does not affect MPTP-induced nigral dopaminergic neurodegeneration and motor impairment in mice.

Collaboration


Dive into the Joeri Van Liefferinge's collaboration.

Top Co-Authors

Avatar

Ann Massie

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ilse Smolders

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Eduard Bentea

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Giulia Albertini

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Thomas Demuyser

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ellen Merckx

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Lauren Deneyer

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Yvette Michotte

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Van Eeckhaut

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge