Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan A. Wiklund is active.

Publication


Featured researches published by Johan A. Wiklund.


PLOS ONE | 2012

Has Alberta oil sands development altered delivery of polycyclic aromatic compounds to the Peace-Athabasca Delta?

Roland I. Hall; Brent B. Wolfe; Johan A. Wiklund; Thomas W. D. Edwards; Andrea J. Farwell; D. George Dixon

Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed.


Science of The Total Environment | 2012

Has Alberta oil sands development increased far-field delivery of airborne contaminants to the Peace–Athabasca Delta?

Johan A. Wiklund; Roland I. Hall; Brent B. Wolfe; Thomas W. D. Edwards; Andrea J. Farwell; D. George Dixon

Identifying potential regional contamination by Alberta oil sands industrial emissions on sensitive ecosystems like the Peace-Athabasca Delta, ~200 km to the north, requires knowledge of historical contaminant levels and trends. Here we provide some of these critically-needed data, based on analysis of metals in a sediment core from an upland precipitation-fed lake in the delta. The lake is well-situated to record the anthropogenic history of airborne contaminant deposition for this region. Sediment records of metals of concern (Pb, Sb, As, Hg) reflect early to mid-20th century increases in North American industrial emissions, followed by reduced emissions due to improved industrial practices after 1950-70. Notably, Pb, Sb, As and Hg have declined since the onset of Alberta oil sands production, belying concerns that this activity has enhanced far-field atmospheric delivery of these contaminants to the delta.


Journal of Great Lakes Research | 2009

Seasonal abundance, community composition, and silica content of diatoms epiphytic on Cladophora glomerata

Sairah Y. Malkin; Ryan J. Sorichetti; Johan A. Wiklund; Robert E. Hecky

ABSTRACT The establishment of dreissenid mussels in the Great Lakes has been implicated in causing a resurgence of benthic macroalgae, notably Cladophora glomerata (L.) Kützing. The seasonal proliferation and nutrient retention of epiphyton on Cladophora may be important to littoral zone processes. In this study, peak diatom epiphyte density (601 diatoms µg-1 dry mass) co-occurred with peak Cladophora biomass. The exceptionally adhesive Cocconeis pediculus came to dominate the epiphyton to the near exclusion of all other diatoms by early summer, indicating powerful constraints on the epiphyte assemblage. There was a strong relationship between epiphytic silica content and epiphyte abundance, but the relationship was different between seasons. In the spring and fall when Cladophora was growing vigorously, silica content of the diatom epiphytes was 20.1–25.6 pmol Si diatom-1. In the summer, during Cladophora senescence, silica content was 6.5–10.0 pmol Si diatom-1 and valves were visibly thinner. These observations suggest that diatom epiphytes may be limited by Si during peak Cladophora biomass. Areal estimates of silica content of Cladophora epiphyton was strongly related with Cladophora biomass: at 2 m depth, silica content increased from 22.7 mmol Si m-2 in the spring to 490 mmol Si m-2 during peak Cladophora biomass. Silica content can be a valuable proxy for diatom epiphyte abundance if the vitality of the Cladophora substrate is considered. Future work needs to assess the seasonality of pelagic versus benthic silica demand and the interannual variability of epiphyte silica content to assess how changes in Cladophora biomass may affect nearshore Si cycling.


Environmental Science & Technology | 2015

Source Apportionment of Background PAHs in the Peace-Athabasca Delta (Alberta, Canada) Using Molecular Level Radiocarbon Analysis

Josué Jautzy; Jason M. E. Ahad; Roland I. Hall; Johan A. Wiklund; Brent B. Wolfe; Charles Gobeil; Martine M. Savard

The downstream accumulation of polycyclic aromatic hydrocarbons (PAHs) in the Peace-Athabasca Delta (PAD), an ecologically important landscape, is a key issue of concern given the rapid development of the oil sands industry in Northern Alberta, Canada. In addition to PAHs derived from industrial activity (i.e., oil sands mining) within the Athabasca watershed, however, forest fires and erosion of fossil fuel deposits within both the Athabasca and Peace watersheds are two potentially important natural sources of PAHs delivered to the PAD. Consequently, evaluating the environmental impact of mining activities requires a quantitative understanding of natural, background PAHs. Here, we utilize molecular-level natural-abundance radiocarbon measurements on an amalgamated sediment record from a Peace River flood-susceptible oxbow lake in the northern Peace sector of the PAD to quantitatively discriminate sources of naturally occurring alkylated PAHs (fossil and modern biomass). A radiocarbon mass balance quantified a predominantly natural petrogenic source (93% petrogenic, 7% forest fire) for alkylated PAHs during the past ∼50 years. Additionally, a significant petrogenic component determined for retene, a compound usually considered a biomarker for softwood combustion, suggests that its use as a unique forest fire indicator may not be suitable in PAD sediments receiving Peace watershed-derived fluvial inputs.


PLOS ONE | 2016

Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

Jamie C. Summers; Joshua Kurek; Jane L. Kirk; Derek C. G. Muir; Xiaowa Wang; Johan A. Wiklund; Colin A. Cooke; Marlene S. Evans; John P. Smol

Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR.


Environmental Research Letters | 2014

Use of pre-industrial floodplain lake sediments to establish baseline river metal concentrations downstream of Alberta oil sands: a new approach for detecting pollution of rivers

Johan A. Wiklund; Roland I. Hall; Brent B. Wolfe; Thomas W. D. Edwards; Andrea J. Farwell; D. George Dixon

In the Alberta oil sands region, insufficient knowledge of pre-disturbance reference conditions has undermined the ability of the Regional Aquatics Monitoring Program (RAMP) to detect pollution of the Athabasca River, because sampling began three decades after the industry started and the river naturally erodes oil-bearing strata. Here, we apply a novel approach to characterize pre-industrial reference metal concentrations in river sediment downstream of Alberta oil sands development by analyzing metal concentrations in sediments deposited in floodplain lakes of the Athabasca Delta during 1700–1916, when they were strongly influenced by Athabasca River floodwaters. We compared results to metal concentrations in surficial bottom sediments sampled by RAMP (2010–2013) at downstream sites of the Athabasca River and distributaries. When normalized to lithium content, concentrations of vanadium (a metal of concern in the oil sands region) and other priority pollutants (Be, Cd, Cr, Cu, Pb, Ni, Zn) in nearly all of the RAMP river sediment samples lie below the upper 95% prediction interval linearly extrapolated from the river-derived lake sediments. Assuming the RAMP protocols obtained recently deposited sediment, this indicates that the metal concentrations in downstream Athabasca River sediment have not increased above pre-disturbance levels. Reference conditions derived from the lake sediment data were used to develop profiles of metal residual concentrations versus time for the RAMP river sediment data, which provides an excellent tool for decision-makers to identify and quantify levels of metal pollution for any given sample, and to monitor for future trends. We recommend that the approach be applied to resurrect the utility of RAMP data at other river sampling locations closer to the development, and for ongoing risk assessment. The approach is also readily transferable to other rivers where insufficient pre-disturbance reference data impairs


The Holocene | 2010

Quantifying Lake Athabasca (Canada) water level during the 'Little Ice Age' highstand from palaeolimnological and geophysical analyses of a transgressive barrier-beach complex

John W. Johnston; Dörte Köster; Brent B. Wolfe; Roland I. Hall; Thomas W. D. Edwards; Anthony L. Endres; Margaret E. Martin; Johan A. Wiklund; Caleb W. Light

We combine multiproxy palaeolimnological and geophysical analyses of a barrier-beach complex to estimate the water level of a sustained Lake Athabasca (Canada) highstand during the ‘Little Ice Age’ (LIA; 1600—1900 CE). Palaeolimnological analyses on sediment cores from the lagoon behind the barrier indicate high water levels during the LIA, controlled by subsurface hydrological connection with Lake Athabasca. Key features in the LIA stratigraphic interval are sand laminations deposited by overwash events and low C/N ratios reflecting deposition of predominantly aquatic organic matter. Ground penetrating radar profiles of the barrier reveal a depositional transgression sequence composed of waterlain landward-dipping foreset beds and horizontal topset beds, overlain by aeolian deposits. Stratigraphic relations suggest that the LIA washover deposits in the lagoon formed as the barrier was actively translating landward, and were generated by high-water events on Lake Athabasca that overtopped the barrier. This indicates Lake Athabasca rose to at least the elevation defined by the contact between the waterlain and aeolian sediments in the barrier, which is >4 m above the historical daily average from gauged records available since 1930 and likely represents storm events during the highstand. Assuming a similar relation between daily average and maximum lake level as in the historical gauge record, our findings suggest that Lake Athabasca was on average 2.3 m higher during the LIA than present day. Extrapolation of this high-water plane into the adjacent Peace-Athabasca Delta indicates that 70% of the modern landscape was frequently and perennially flooded until very recently, consistent with palaeolimnological evidence from several lakes in the delta.


Science of The Total Environment | 2016

Paleolimnological assessment of riverine and atmospheric pathways and sources of metal deposition at a floodplain lake (Slave River Delta, Northwest Territories, Canada).

Lauren A. MacDonald; Johan A. Wiklund; Matthew C. Elmes; Brent B. Wolfe; Roland I. Hall

Growth of natural resource development in northern Canada has raised concerns about the effects on downstream aquatic ecosystems, but insufficient knowledge of pre-industrial baseline conditions continues to undermine ability of monitoring programs to distinguish industrial-derived contaminants from those supplied by natural processes. Here, we apply a novel paleolimnological approach to define pre-industrial baseline concentrations of 13 priority pollutant metals and vanadium and assess temporal changes, pathways and sources of these metals at a flood-prone lake (SD2) in the Slave River Delta (NWT, Canada) located ~500 km north of Albertas oil sands development and ~140 km south of a former gold mine at Yellowknife, NWT. Results identify that metal concentrations, normalized to lithium concentration, are not elevated in sediments deposited during intervals of high flood influence or low flood influence since onset of oil sands development (post-1967) relative to the 1920-1967 baseline established at SD2. When compared to a previously defined baseline for the upstream Athabasca River, several metal-Li relations (Cd, Cr, Ni, Zn, V) in post-1967 sediments delivered by floodwaters appear to plot along a different trajectory, suggesting that the Peace and Slave River watersheds are important natural sources of metal deposition at the Slave River Delta. However, analysis revealed unusually high concentrations of As deposited during the 1950s, an interval of very low flood influence at SD2, which corresponded closely with emission history of the Giant Mine gold smelter indicating a legacy of far-field atmospheric pollution. Our study demonstrates the potential for paleolimnological characterization of baseline conditions and detection of pollution from multiple pathways in floodplain ecosystems, but that knowledge of paleohydrological conditions is essential for interpretation of contaminant profiles.


Science of The Total Environment | 2017

Anthropogenic mercury deposition in Flin Flon Manitoba and the Experimental Lakes Area Ontario (Canada): A multi-lake sediment core reconstruction

Johan A. Wiklund; Jane L. Kirk; Derek C. G. Muir; Marlene S. Evans; Fan Yang; Jonathan Keating; Matthew T. Parsons

High-resolution records of anthropogenic mercury (Hg) deposition were constructed from 9 lakes located 5-75km from the Flin Flon, Manitoba smelter (formerly one of North Americas largest atmospheric Hg point sources) and 5 lakes in Experimental Lakes Area (ELA), Ontario; a region remote from major Hg point sources. Anthropogenic Hg deposition, as both a flux and inventory, was determined after accounting for lake-specific natural Hg background concentrations, changes in sedimentation and sediment focusing. Results show that records of anthropogenic flux and inventory of Hg were remarkably consistent among the ELA lakes, but varied by 2 orders of magnitude among Flin Flon lakes. The relation between Hg inventories (normalized for prevailing wind direction) and distance from the smelter was used to estimate the total Hg fallout within a 50km radius in 5year time-steps, thus providing a quantitative spatial-temporal Hg depositional history for the Flin Flon region. The same relation solved for 8 cardinal directions weighted by the inverse of the previously applied wind direction normalization generates a map of Hg inventory and deposition on the landscape (Supplementary video). This novel application of sediment core data constructs a landscape model and allows for a visualization of contaminant deposition with respect to a point major source in both space and time. The propensity for Hg to undergo long-range, even global transport explains why Hg deposition within 50km of Flin Flon was ~11% of estimated releases. That is until smelter releases were reduced >10-fold (post-2000), after which observed deposition exceeded smelter releases, suggesting landscape re-emission/remobilization of legacy Hg is a major ongoing regional source of Hg.


Nature Communications | 2018

The world’s largest High Arctic lake responds rapidly to climate warming

Igor Lehnherr; Vincent L. St. Louis; Martin Sharp; Alex S. Gardner; John P. Smol; Sherry L. Schiff; Derek C. G. Muir; Neil Michelutti; Charles Tarnocai; Kyra A. St. Pierre; Craig A. Emmerton; Johan A. Wiklund; Günter Köck; Scott F. Lamoureux; Charles H. Talbot

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic’s largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed’s glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.Arctic ecosystems are at threat due to the rapid nature of climate change and Arctic amplification. Here, the authors show that the watershed of Lake Hazen, the Arctic’s largest lake by volume, has undergone dramatic changes in response to as little as a ~1°C increase in summer air temperatures.

Collaboration


Dive into the Johan A. Wiklund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent B. Wolfe

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge