Johan Banér
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johan Banér.
Nature Biotechnology | 2003
Paul Hardenbol; Johan Banér; Maneesh Jain; Mats Nilsson; Eugeni Namsaraev; George Karlin-Neumann; Hossein Fakhrai-Rad; Mostafa Ronaghi; Thomas D. Willis; Ulf Landegren; Ronald W. Davis
We report on the development of molecular inversion probe (MIP) genotyping, an efficient technology for large-scale single nucleotide polymorphism (SNP) analysis. This technique uses MIPs to produce inverted sequences, which undergo a unimolecular rearrangement and are then amplified by PCR using common primers and analyzed using universal sequence tag DNA microarrays, resulting in highly specific genotyping. With this technology, multiplex analysis of more than 1,000 probes in a single tube can be done using standard laboratory equipment. Genotypes are generated with a high call rate (95%) and high accuracy (>99%) as determined by independent sequencing.
Human Reproduction | 2010
D.S. Johnson; G. Gemelos; Johan Banér; A. Ryan; C. Cinnioglu; M. Banjevic; R. Ross; M. Alper; B. Barrett; J. Frederick; D. Potter; B. Behr; Matthew Rabinowitz
BACKGROUND Preimplantation genetic screening (PGS) has been used in an attempt to determine embryonic aneuploidy. Techniques that use new molecular methods to determine the karyotype of an embryo are expanding the scope of PGS. METHODS We introduce a new method for PGS, termed ‘parental support’, which leverages microarray measurements from parental DNA to ‘clean’ single-cell microarray measurements on embryonic cells and explicitly computes confidence in each copy number call. The method distinguishes mitotic and meiotic copy errors and determines parental source of aneuploidy. RESULTS Validation with 459 single cells of known karyotype indicated that per-cell false-positive and false-negative rates are roughly equivalent to the ‘gold standard’ metaphase karyotype. The majority of the cells were run in parallel with a clinical commercial PGS service. Computed confidences were conservative and roughly concordant with accuracy. To examine ploidy in human embryos, the method was then applied to 26 disaggregated, cryopreserved, cleavage-stage embryos for a total of 134 single blastomeres. Only 23.1% of the embryos were euploid, though 46.2% of embryos were mosaic euploid. Mosaicism affected 57.7% of the embryos. Counts of mitotic and meiotic errors were roughly equivalent. Maternal meiotic trisomy predominated over paternal trisomy, and maternal meiotic trisomies were negatively predictive of mosaic euploid embryos. CONCLUSIONS We have performed a major preclinical validation of a new method for PGS and found that the technology performs approximately as well as a metaphase karyotype. We also directly measured the mechanism of aneuploidy in cleavage-stage human embryos and found high rates and distinct patterns of mitotic and meiotic aneuploidy.
Nucleic Acids Research | 2005
Marianna Szemes; P.J.M. Bonants; Marjanne de Weerdt; Johan Banér; Ulf Landegren; C.D. Schoen
Padlock probes (PLPs) are long oligonucleotides, whose ends are complementary to adjacent target sequences. Upon hybridization to the target, the two ends are brought into contact, allowing PLP circularization by ligation. PLPs provide extremely specific target recognition, which is followed by universal amplification and microarray detection. Since target recognition is separated from downstream processing, PLPs enable the development of flexible and extendable diagnostic systems, targeting diverse organisms. To adapt padlock technology for diagnostic purposes, we optimized PLP design to ensure high specificity and eliminating ligation on non-target sequences under real-world assay conditions. We designed and tested 11 PLPs to target various plant pathogens at the genus, species and subspecies levels, and developed a prototype PLP-based plant health chip. Excellent specificity was demonstrated toward the target organisms. Assay background was determined for each hybridization using a no-target reference sample, which provided reliable and sensitive identification of positive samples. A sensitivity of 5 pg genomic DNA and a dynamic range of detection of 100 were observed. The developed multiplex diagnostic system was validated using genomic DNAs of characterized isolates and artificial mixtures thereof. The demonstrated system is adaptable to a wide variety of applications ranging from pest management to environmental microbiology.
Nucleic Acids Research | 2007
Simon Fredriksson; Johan Banér; Fredrik Dahl; Angela Chu; Hanlee P. Ji; Katrina Welch; Ronald W. Davis
Herein we present Gene-Collector, a method for multiplex amplification of nucleic acids. The procedure has been employed to successfully amplify the coding sequence of 10 human cancer genes in one assay with uniform abundance of the final products. Amplification is initiated by a multiplex PCR in this case with 170 primer pairs. Each PCR product is then specifically circularized by ligation on a Collector probe capable of juxtapositioning only the perfectly matched cognate primer pairs. Any amplification artifacts typically associated with multiplex PCR derived from the use of many primer pairs such as false amplicons, primer-dimers etc. are not circularized and degraded by exonuclease treatment. Circular DNA molecules are then further enriched by randomly primed rolling circle replication. Amplification was successful for 90% of the targeted amplicons as seen by hybridization to a custom resequencing DNA micro-array. Real-time quantitative PCR revealed that 96% of the amplification products were all within 4-fold of the average abundance. Gene-Collector has utility for numerous applications such as high throughput resequencing, SNP analyses, and pathogen detection.
Fertility and Sterility | 2012
Matthew Rabinowitz; Allison Ryan; George Gemelos; Matthew Hill; Johan Banér; Cengiz Cinnioglu; Milena Banjevic; D. Potter; Dmitri A. Petrov; Zachary Demko
OBJECTIVE To characterize chromosomal error types and parental origin of aneuploidy in cleavage-stage embryos using an informatics-based technique that enables the elucidation of aneuploidy-causing mechanisms. DESIGN Analysis of blastomeres biopsied from cleavage-stage embryos for preimplantation genetic screening during IVF. SETTING Laboratory. PATIENT(S) Couples undergoing IVF treatment. INTERVENTION(S) Two hundred seventy-four blastomeres were subjected to array-based genotyping and informatics-based techniques to characterize chromosomal error types and parental origin of aneuploidy across all 24 chromosomes. MAIN OUTCOME MEASURE(S) Chromosomal error types (monosomy vs. trisomy; mitotic vs. meiotic) and parental origin (maternal vs. paternal). RESULT(S) The rate of maternal meiotic trisomy rose significantly with age, whereas other types of trisomy showed no correlation with age. Trisomies were mostly maternal in origin, whereas paternal and maternal monosomies were roughly equal in frequency. No examples of paternal meiotic trisomy were observed. Segmental error rates were found to be independent of maternal age. CONCLUSION(S) All types of aneuploidy that rose with increasing maternal age can be attributed to disjunction errors during meiosis of the oocyte. Chromosome gains were predominantly maternal in origin and occurred during meiosis, whereas chromosome losses were not biased in terms of parental origin of the chromosome. The ability to determine the parental origin for each chromosome, as well as being able to detect whether multiple homologs from a single parent were present, allowed greater insights into the origin of aneuploidy.
Current Opinion in Biotechnology | 2001
Johan Banér; Mats Nilsson; Anders Isaksson; Maritha Mendel-Hartvig; Dan-Oscar Antson; Ulf Landegren
With the impending availability of total information about nucleic acid sequences in humans and other organisms, tools to investigate these sequences on a large scale assume increasing importance. Methods currently in use, however, cannot offer the required combination of high-throughput, sensitivity and specificity of detection. Padlock probes, circularizing oligonucleotides, may provide a means to detect, distinguish, quantitate and also locate very large numbers of DNA or RNA sequences. Recent developments in areas such as the biochemistry of ligation and characterization of ligases, methods to replicate circularized probes and the development of assays based on these principles augment the potential of padlock probes.
Comparative and Functional Genomics | 2003
Ulf Landegren; Fredrik Dahl; Mats Nilsson; Simon Fredriksson; Johan Banér; Mats Gullberg; Jonas Jarvius; Sigrun M. Gustafsdottir; Ola Söderberg; Olle Ericsson; Johan Stenberg; Edith Schallmeiner
Highly specific high-throughput assays will be required to take full advantage of the accumulating information about the macromolecular composition of cells and tissues, in order to characterize biological systems in health and disease. We discuss the general problem of detection specificity and present the approach our group has taken, involving the reformatting of analogue biological information to digital reporter segments of genetic information via a series of DNA ligation assays. The assays enable extensive, coordinated analyses of the numbers and locations of genes, transcripts and protein.
Journal of Clinical Microbiology | 2008
Péter Gyarmati; Tim Conze; Siamak Zohari; Neil LeBlanc; Mats Nilsson; Ulf Landegren; Johan Banér; Sándor Belák
ABSTRACT A subtyping assay for both the hemagglutinin (HA) and neuraminidase (NA) surface antigens of the avian influenza virus (AIV) has been developed. The method uses padlock probe chemistry combined with a microarray output for detection. The outstanding feature of this assay is its capability to designate both the HA and the NA of an AIV sample from a single reaction mixture. A panel of 77 influenza virus strains was tested representing the entire assortment of the two antigens. One hundred percent (77/77) of the samples tested were identified as AIV, and 97% (75/77) were subtyped correctly in accordance with previous examinations performed by classical diagnostic methods. Testing of heterologous pathogens verified the specificity of the assay. This assay is a convenient and practical tool for the study of AIVs, providing important HA and NA data more rapidly than conventional methods.
Genetics in Medicine | 2013
Allison Ryan; Johan Banér; Zachary Demko; Matthew Hill; Styrmir Sigurjonsson; Michael L. Baird; Matthew Rabinowitz
Purpose:The aim of the study was to evaluate the diagnostic accuracy of an informatics-based, noninvasive, prenatal paternity test using array-based single-nucleotide polymorphism measurements of cell-free DNA isolated from maternal plasma.Methods:Blood samples were taken from 21 adult pregnant women (with gestational ages between 6 and 21 weeks), and a genetic sample was taken from the corresponding biological fathers. Paternity was confirmed by genetic testing of the infant, products of conception, control of fertilization, and/or preimplantation genetic diagnosis during in vitro fertilization. Parental DNA samples and maternal plasma cell-free DNA were amplified and analyzed using a HumanCytoSNP-12 array. An informatics-based method measured single-nucleotide polymorphism data, confirming or rejecting paternity. Each plasma sample with a sufficient fetal cell-free DNA fraction was independently tested against the confirmed father and 1,820 random, unrelated males.Results:One of the 21 samples had insufficient fetal cell-free DNA. The test correctly confirmed paternity for the remaining 20 samples (100%) when tested against the biological father, with P values of <10−4. For the 36,400 tests using an unrelated male as the alleged father, 99.95% (36,382) correctly excluded paternity and 0.05% (18) were indeterminate. There were no miscalls.Conclusion:A noninvasive paternity test using informatics-based analysis of single-nucleotide polymorphism array measurements accurately determined paternity early in pregnancy.Genet Med 2013:15(6):473–477
Nature Genetics | 1999
Anders Isaksson; Johan Banér; Mats Nilsson; Gisela Barbany; Maritha Mendel-Hartwig; Anne-Christine Syvänen; Ulf Landegren
Multiplex analysis of nucleic acid sequences by amplification of padlock probes on DNA arrays