Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Ericsson is active.

Publication


Featured researches published by Johan Ericsson.


Molecular Cell | 2002

Control of Smad7 Stability by Competition between Acetylation and Ubiquitination

Eva Grönroos; Ulf Hellman; Carl-Henrik Heldin; Johan Ericsson

Smad proteins regulate gene expression in response to TGFbeta signaling. Here we present evidence that Smad7 interacts with the transcriptional coactivator p300, resulting in acetylation of Smad7 on two lysine residues in its N terminus. Acetylation or mutation of these lysine residues stabilizes Smad7 and protects it from TGFbeta-induced degradation. Furthermore, we demonstrate that the acetylated residues in Smad7 also are targeted by ubiquitination and that acetylation of these lysine residues prevents subsequent ubiquitination. Specifically, acetylation of Smad7 protects it against ubiquitination and degradation mediated by the ubiquitin ligase Smurf1. Thus, our data suggest that competition between ubiquitination and acetylation of overlapping lysine residues constitutes a novel mechanism to regulate protein stability.


Gastroenterology | 2011

Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma.

Diego F. Calvisi; Chunmei Wang; Coral Ho; Sara Ladu; Susie A. Lee; S Mattu; G Destefanis; Salvatore Delogu; Antje Zimmermann; Johan Ericsson; Stefania Brozzetti; Tommaso Staniscia; Xin Chen; Frank Dombrowski; Matthias Evert

BACKGROUND & AIMS De novo lipogenesis is believed to be involved in oncogenesis. We investigated the role of aberrant lipid biosynthesis in the pathogenesis of human hepatocellular carcinoma (HCC). METHODS We evaluated expression of enzymes that regulate lipogenesis in human normal liver tissues and HCC and surrounding, nontumor, liver tissues from patients using real-time reverse transcription polymerase chain reaction, immunoblotting, immunohistochemistry, and biochemical assays. Effects of lipogenic enzymes on human HCC cell lines were evaluated using inhibitors and overexpression experiments. The lipogenic role of the proto-oncogene AKT was assessed in vitro and in vivo. RESULTS In human liver samples, de novo lipogenesis was progressively induced from nontumorous liver tissue toward the HCC. Extent of aberrant lipogenesis correlated with clinical aggressiveness, activation of the AKT-mammalian target of rapamycin signaling pathway, and suppression of adenosine monophosphate-activated protein kinases. In HCC cell lines, the AKT-mammalian target of rapamycin complex 1-ribosomal protein S6 pathway promoted lipogenesis via transcriptional and post-transcriptional mechanisms that included inhibition of fatty acid synthase ubiquitination by the USP2a de-ubiquitinase and disruption of the SREBP1 and SREBP2 degradation complexes. Suppression of the genes adenosine triphosphate citrate lyase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, or sterol regulatory element-binding protein 1, which are involved in lipogenesis, reduced proliferation, and survival of HCC cell lines and AKT-dependent cell proliferation. Overexpression of an activated form of AKT in livers of mice induced lipogenesis and tumor development. CONCLUSIONS De novo lipogenesis has pathogenic and prognostic significance for HCC. Inhibitors of lipogenic signaling, including those that inhibit the AKT pathway, might be useful as therapeutics for patients with liver cancer.


Journal of Biological Chemistry | 1997

Identification of Glycerol-3-phosphate Acyltransferase as an Adipocyte Determination and Differentiation Factor 1- and Sterol Regulatory Element-binding Protein-responsive Gene

Johan Ericsson; Simon M. Jackson; Jae Bum Kim; Bruce M. Spiegelman; Peter A. Edwards

We demonstrate that the mRNA levels of glycerol-3-phosphate acyltransferase (GPAT), a mitochondrial enzyme catalyzing the initial step in glycerolipid synthesis, are induced during the differentiation of 3T3-L1 preadipocytes to adipocytes and following ectopic expression of rat adipocyte determination and differentiation factor 1 (ADD1), a protein with high homology to the human sterol regulatory element-binding protein-1 (SREBP-1). The increase in GPAT mRNA levels that occurs during differentiation is partially prevented by ectopic expression of a dominant negative form of ADD1. Nucleotide sequences corresponding to the proximal promoter of the murine mitochondrial GPAT gene (Jerkins, A. A., Liu, W. R., Lee, S., and Sul, H. S. (1995) J. Biol. Chem. 270, 1416-1421) bound SREBP-1a and NF-Y in electromobility shift assays. In addition, GPAT promoter-luciferase reporter genes were stimulated by co-expression of SREBP-1a. This increase was attenuated when either a dominant negative form of NF-Y was co-transfected into the cells or when the GPAT promoter contained mutations in the putative binding sites for SREBP-1a or NF-Y. These studies demonstrate that the regulated expression of the mitochondrial GPAT gene requires both NF-Y and ADD1/SREBPs. Thus, SREBPs/ADD1 regulate not only genes involved in cholesterol homeostasis and fatty acid synthesis but also a key enzyme in glycerolipid synthesis.


Cancer Research | 2008

Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1.

Eiji Furuta; Sudha K. Pai; Rui Zhan; Sucharita Bandyopadhyay; Yin-Yuan Mo; Shigeru Hirota; Sadahiro Hosobe; Taisei Tsukada; Kunio Miura; Shuichi Kamada; Ken Saito; Megumi Iiizumi; Wen Liu; Johan Ericsson; Kounosuke Watabe

The fatty acid synthase (FAS) gene is significantly up-regulated in various types of cancers, and blocking the FAS expression results in apoptosis of tumor cells. Therefore, FAS is considered to be an attractive target for anticancer therapy. However, the molecular mechanism by which the FAS gene is up-regulated in tumor cells is poorly understood. We found that FAS was significantly up-regulated by hypoxia, which was also accompanied by reactive oxygen species (ROS) generation in human breast cancer cell lines. The FAS expression was also activated by H(2)O(2), whereas N-acetyl-L-cystein, a ROS inhibitor, suppressed the expression. We also found that the hypoxia significantly up-regulated sterol regulatory-element binding protein (SREBP)-1, the major transcriptional regulator of the FAS gene, via phosphorylation of Akt followed by activation of hypoxia-inducible factor 1 (HIF1). Moreover, our results of reporter assay and chromatin immunoprecipitation analysis indicate that SREBP-1 strongly bound to the SREBP binding site/E-box sequence on the FAS promoter under hypoxia. In our xenograft mouse model, FAS was strongly expressed in the hypoxic regions of the tumor. In addition, our results of immunohistochemical analysis for human breast tumor specimens indicate that the expressions of both FAS and SREBP-1 were colocalized with hypoxic regions in the tumors. Furthermore, we found that hypoxia-induced chemoresistance to cyclophosphamide was partially blocked by a combination of FAS inhibitor and cyclophosphamide. Taken together, our results indicate that FAS gene is up-regulated by hypoxia via activation of the Akt and HIF1 followed by the induction of the SREBP-1 gene, and that hypoxia-induced chemoresistance is partly due to the up-regulation of FAS.


Molecular and Cellular Biology | 2003

Coactivator-Dependent Acetylation Stabilizes Members of the SREBP Family of Transcription Factors

Valeria Giandomenico; Maria Simonsson; Eva Grönroos; Johan Ericsson

ABSTRACT Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.


Molecular and Cellular Biology | 2003

Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

Keiko Kurisaki; Akira Kurisaki; Ulrich Valcourt; Alexei A. Terentiev; Katerina Pardali; Peter ten Dijke; Carl-Henrik Heldin; Johan Ericsson; Aristidis Moustakas

ABSTRACT Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways.


Nature Communications | 2011

TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer

Yabing Mu; Reshma Sundar; Noopur Thakur; Maria Ekman; Shyam Kumar Gudey; Mariya Yakymovych; Annika Hermansson; Helen Dimitriou; Johan Ericsson; Carl-Henrik Heldin; Maréne Landström

Transforming growth factor β (TGFβ) is a pluripotent cytokine promoting epithelial cell plasticity during morphogenesis and tumour progression. TGFβ binding to type II and type I serine/threonine kinase receptors (TβRII and TβRI) causes activation of different intracellular signaling pathways. TβRI is associated with the ubiquitin ligase tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6). Here we show that TGFβ, via TRAF6, causes Lys63-linked polyubiquitination of TβRI, promoting cleavage of TβRI by TNF-alpha converting enzyme (TACE), in a PKCζ-dependent manner. The liberated intracellular domain (ICD) of TβRI associates with the transcriptional regulator p300 to activate genes involved in tumour cell invasiveness, such as Snail and MMP2. Moreover, TGFβ-induced invasion of cancer cells is TACE- and PKCζ- dependent and the TβRI ICD is localized in the nuclei of different kinds of tumour cells in tissue sections. Thus, our data reveal a specific role for TβRI in TGFβ mediated tumour invasion.


Journal of Biological Chemistry | 1995

NF-Y Has a Novel Role in Sterol-dependent Transcription of Two Cholesterogenic Genes

Simon M. Jackson; Johan Ericsson; Timothy F. Osborne; Peter A. Edwards

The transcription of farnesyl diphosphate (FPP) synthase is regulated up to 30-fold by the sterol status of the cell. Point mutations in a 6-base pair ATTGGC sequence in the promoter disrupt both sterol-dependent transcription in vivo as well as binding of the transcription factor NF-Y in vitro. Co-transfection of cells with NF-YA29, a dominant negative form of NF-Y, and various promoter-reporter genes specifically inhibits the sterol-dependent regulation of FPP synthase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase. In contrast, NF-YA29 does not affect the regulation of reporter genes under the control of promoters derived from either the HMG-CoA reductase or the low density lipoprotein receptor gene. Transient expression of the 68-kDa transcriptionally active fragment of sterol regulatory element-binding protein in cells stimulates an HMG-CoA synthase-reporter gene over 90-fold. This induction is blocked in cells co-expressing NF-YA29. We hypothesize that NF-Y plays a novel role in sterol-dependent regulation of two key genes in the cholesterol biosynthetic pathway and that this role requires a specific interaction with the sterol regulatory element-binding protein or related transcription factors.


Journal of Biological Chemistry | 1996

Synergistic Binding of Sterol Regulatory Element-binding Protein and NF-Y to the Farnesyl Diphosphate Synthase Promoter Is Critical for Sterol-regulated Expression of the Gene

Johan Ericsson; Simon M. Jackson; Peter A. Edwards

Sterol-regulated transcription of the farnesyl diphosphate (FPP) synthase gene is dependent on two cis elements in the proximal promoter. These elements, an inverted CCAAT box and sterol regulatory element 3 (SRE-3), bind NF-Y and sterol regulatory element-binding protein 1 (SREBP-1), respectively. We now demonstrate that the binding of recombinant SREBP-1 to its cognate site (SRE-3) within the FPP synthase promoter in vitro is enhanced by binding of NF-Y to the upstream inverted CCAAT box. Using an FPP synthase promoter fragment containing the binding sites for both NF-Y and SREBP-1 in gel mobility shift assays, we demonstrate that the addition of NF-Y increases the binding of SREBP-1 to SRE-3 over 20-fold. In contrast, NF-Y does not stimulate the binding of SREBP-1 to SRE-3 when the inverted CCAAT box is either mutated or 4 base pairs (bp) are inserted between the inverted CCAAT box and SRE-3. Promoter-reporter genes, containing either the wild-type FPP synthase promoter sequence or containing the 4-bp insertion between the inverted CCAAT box and SRE-3, were transiently transfected into cells. The activity of the wild-type promoter-reporter gene increased when the cells were either incubated in sterol-depleted medium or were co-transfected with an expression vector encoding transcriptionally active SREBP-1. This increase in activity was attenuated when the promoter contained the 4-bp insert, consistent with defective binding of SREBP to the promoter in vivo. These studies suggest that the binding of SREBP-1 to SRE-3 in the FPP synthase promoter, and subsequent stimulation of transcription, is dependent on synergistic binding and a functional interaction between SREBP-1 and NF-Y.


Journal of Biological Chemistry | 2006

Phosphorylation and Ubiquitination of the Transcription Factor Sterol Regulatory Element-binding Protein-1 in Response to DNA Binding

Tanel Punga; Johan Ericsson

Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors control cholesterol and lipid metabolism and play critical roles during adipocyte differentiation. The transcription factor SREBP1 is degraded by the ubiquitin-proteasome system following phosphorylation of Thr426 and Ser430 in its phosphodegron. We now demonstrate that the glycogen synthase kinase (GSK)-3β-dependent phosphorylation of these residues in SREBP1 is enhanced in response to specific DNA binding. DNA binding enhances the direct interaction between the C-terminal domain of SREBP1 and GSK-3β. Accordingly, we demonstrate that GSK-3β is recruited to the promoters of SREBP target genes in vivo. As a result of the phosphorylation of Thr426 and Ser430, the ubiquitin ligase Fbw7 is recruited to SREBP molecules associated with target promoters. Using a reconstituted ubiquitination system, we demonstrate that Fbw7-mediated ubiquitination of SREBP1 is dependent on its DNA binding activity. Thus, DNA binding could provide a mechanistic link between the phosphorylation, ubiquitination, and degradation of active transcription factors.

Collaboration


Dive into the Johan Ericsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl-Henrik Heldin

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadeusz Chojnacki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Grönroos

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanel Punga

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anders Sundqvist

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge