Johan Fogelqvist
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johan Fogelqvist.
Molecular Ecology | 2004
Tord Snäll; Johan Fogelqvist; Paulo Justiniano Ribeiro; Martin Lascoux
Three different approaches were used to assess the kinship structure of two epiphytic bryophytes, Orthotrichum speciosum and O. obtusifolium, that have different dispersal strategies. The two species were sampled in a 200 ha landscape where species occurrence and host trees had been mapped previously. Local environmental conditions at sampled trees were recorded and kinship between individuals was calculated based on amplified fragment length polymorphism (AFLP)‐marker data. We did not detect any association between AFLP‐markers and investigated environmental conditions. In both species, significant kinship coefficients were found between individuals up to 300–350 m apart which shows that both species have a restricted dispersal range. The spatial kinship structure was detected with both autocorrelation analysis and generalized additive models (GAMs), but linear regression failed to detect any structure in O. speciosum. Although the dioecious O. obtusifolium is currently the more common species it may, none the less, due to its restricted dispersal range and reproduction mode, become threatened in the future by current silvicultural practices which enhance the distance between host trees and decrease their life span. Finally, GAMs seem most appropriate for analysing spatial genetic structure because the effects of local environmental conditions and spatial structure can be analysed simultaneously, no assumption of a parametric form between kinship coefficient and distance is required, and spatial data resolution is not lost in the arbitrary choice of distance classes characterizing autocorrelation analysis.
Scientific Reports | 2015
Arne Schwelm; Johan Fogelqvist; Andrea Knaust; Sabine Jülke; Tua Lilja; German Bonilla-Rosso; Magnus Karlsson; Andrej Shevchenko; Vignesh Dhandapani; Su Ryun Choi; Hong Gi Kim; Ju Young Park; Yong Pyo Lim; Jutta Ludwig-Müller; Christina Dixelius
Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.
PLOS ONE | 2012
Ramesh R. Vetukuri; Anna K. M. Åsman; Christian Tellgren-Roth; Sultana N. Jahan; Johan Reimegård; Johan Fogelqvist; Eugene I. Savenkov; Fredrik Söderbom; Anna O. Avrova; Stephen C. Whisson; Christina Dixelius
Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19–40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.
Molecular Ecology Resources | 2010
Johan Fogelqvist; Anne Niittyvuopio; Jon Ågren; Outi Savolainen; Martin Lascoux
Clustering methods have been used extensively to unravel cryptic population genetic structure. We investigated the effect of the number of individuals sampled in each location on the resulting number of clusters. Our study was motivated by recent results in Arabidopsis thaliana: studies in which more than one individual was sampled per location apparently have led to a much higher number of clusters than studies where only one individual was sampled in each location, as is generally done in this species. We show, using computer simulations and microsatellite data in A. thaliana, that the number of sampled individuals indeed has a strong impact on the number of resulting clusters. This effect is smaller if the sampled populations have a hierarchical structure. In most cases, sampling 5–10 individuals per population should be enough. The results argue for abandoning the concept of ‘accessions’ in partially selfing organisms.
Journal of Experimental Botany | 2015
Sultana N. Jahan; Anna K. M. Åsman; Pádraic Corcoran; Johan Fogelqvist; Ramesh R. Vetukuri; Christina Dixelius
Highlight A host-induced gene-silencing strategy for controlling potato late blight is presented, a plant disease that conventionally requires regular application of fungicides at high rates.
Molecular Biology and Evolution | 2016
Roberto Sierra; Silvia J. Cañas-Duarte; Fabien Burki; Arne Schwelm; Johan Fogelqvist; Christina Dixelius; Laura Natalia González-García; Gillian H. Gile; Claudio H. Slamovits; Christophe Klopp; Silvia Restrepo; Isabelle Arzul; Jan Pawlowski
The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites.
G3: Genes, Genomes, Genetics | 2011
Sofia Berlin; Johan Fogelqvist; Martin Lascoux; Ulf Lagercrantz; Ann Christin Rönnberg-Wästljung
We investigated species divergence, present and past gene flow, levels of nucleotide polymorphism, and linkage disequilibrium in two willows from the plant genus Salix. Salix belongs together with Populus to the Salicaceae family; however, most population genetic studies of Salicaceae have been performed in Populus, the model genus in forest biology. Here we present a study on two closely related willow species Salix viminalis and S. schwerinii, in which we have resequenced 33 and 32 nuclear gene segments representing parts of 18 nuclear loci in 24 individuals for each species. We used coalescent simulations and estimated the split time to around 600,000 years ago and found that there is currently limited gene flow between the species. Mean intronic nucleotide diversity across gene segments was slightly higher in S. schwerinii (πi = 0.00849) than in S. viminalis (πi = 0.00655). Compared with other angiosperm trees, the two willows harbor intermediate levels of silent polymorphisms. The decay of linkage disequilibrium was slower in S. viminalis compared with S. schwerinii, and we speculate that this is due to different demographic histories as S. viminalis has been partly domesticated in Europe.
Insectes Sociaux | 2011
Perttu Seppä; Johan Fogelqvist; Niclas Gyllenstrand; Maria Cristina Lorenzi
We used DNA microsatellites to study colony kin structure and breeding patterns in the primitively eusocial wasp Polistes biglumis. P. biglumis inhabits cool areas at high altitudes and, as a consequence, has a reduced colony cycle compared to more temperate Polistes. P. biglumis colonies are always founded and controlled by a single foundress, but nest failure is common and foundresses losing their nests do not have time to start new ones due to the short season. Instead, nests are characterized by frequent female turnover, in the form of females taking over (usurpation) other con-specific nests. Our results showed that most nests had offspring from multiple unrelated females, including some where multiple females were not observed in monitoring. Reconstruction of behavioural events from the genetic data revealed three types of multiple matriline nests: (a) nests that were usurped by another female, where the original nest owner disappeared following the usurpation event, (b) nests that were joined by another female, where the original nest owner stayed following the joining event, (c) nests that were both usurped and joined by other females. We also found, for the first time, a clear indication of multiple mating by Polistes females. Moreover, males mating with the same female were related, which may be explained by the lek mating system of P. biglumis. Finally, we analysed the nest sex ratios and how it changed during the season and found that sexes were produced sequentially, males before females.
Gcb Bioenergy | 2016
Henrik R. Hallingbäck; Johan Fogelqvist; Stephen J. Powers; Juan L. Turrion-Gomez; Rachel Rossiter; Joanna S. Amey; Tom Martin; Martin Weih; Niclas Gyllenstrand; A. Karp; Ulf Lagercrantz; Steven J. Hanley; Sofia Berlin; Ann-Christin Rönnberg-Wästljung
Willow species (Salix) are important as short‐rotation biomass crops for bioenergy, which creates a demand for faster genetic improvement and breeding through deployment of molecular marker‐assisted selection (MAS). To find markers associated with important adaptive traits, such as growth and phenology, for use in MAS, we genetically dissected the trait variation of a Salix viminalis (L.) population of 323 accessions. The accessions were sampled throughout northern Europe and were established at two field sites in Pustnäs, Sweden, and at Woburn, UK, offering the opportunity to assess the impact of genotype‐by‐environment interactions (G × E) on trait–marker associations. Field measurements were recorded for growth and phenology traits. The accessions were genotyped using 1536 SNP markers developed from phenology candidate genes and from genes previously observed to be differentially expressed in contrasting environments. Association mapping between 1233 of these SNPs and the measured traits was performed taking into account population structure and threshold selection bias. At a false discovery rate (FDR) of 0.2, 29 SNPs were associated with bud burst, leaf senescence, number of shoots or shoot diameter. The percentage of accession variation ( Radj2 ) explained by these associations ranged from 0.3% to 4.4%, suggesting that the studied traits are controlled by many loci of limited individual impact. Despite this, a SNP in the EARLY FLOWERING 3 gene was repeatedly associated (FDR < 0.2) with bud burst. The rare homozygous genotype exhibited 0.4–1.0 lower bud burst scores than the other genotype classes on a five‐grade scale. Consequently, this marker could be promising for use in MAS and the gene deserves further study. Otherwise, associations were less consistent across sites, likely due to their small Radj2 estimates and to considerable G × E interactions indicated by multivariate association analyses and modest trait accession correlations across sites (0.32–0.61).
BMC Plant Biology | 2014
Hanneke Marjolijn Peele; Na Guan; Johan Fogelqvist; Christina Dixelius
BackgroundPlants have evolved disease resistance (R) genes encoding for nucleotide-binding site (NB) and leucine-rich repeat (LRR) proteins with N-terminals represented by either Toll/Interleukin-1 receptor (TIR) or coiled-coil (CC) domains. Here, a genome-wide study of presence and diversification of CC-NB-LRR and TIR-NB-LRR encoding genes, and shorter domain combinations in 19 Arabidopsis thaliana accessions and Arabidopsis lyrata, Capsella rubella, Brassica rapa and Eutrema salsugineum are presented.ResultsOut of 528 R genes analyzed, 12 CC-NB-LRR and 17 TIR-NB-LRR genes were conserved among the 19 A. thaliana genotypes, while only two CC-NB-LRRs, including ZAR1, and three TIR-NB-LRRs were conserved when comparing the five species. The RESISTANCE TO LEPTOSPHAERIA MACULANS 1 (RLM1) locus confers resistance to the Brassica pathogen L. maculans the causal agent of blackleg disease and has undergone conservation and diversification events particularly in B. rapa. On the contrary, the RLM3 locus important in the immune response towards Botrytis cinerea and Alternaria spp. has recently evolved in the Arabidopsis genus.ConclusionOur genome-wide analysis of the R gene repertoire revealed a large sequence variation in the 23 cruciferous genomes. The data provides further insights into evolutionary processes impacting this important gene family.