Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Goris is active.

Publication


Featured researches published by Johan Goris.


Applied and Environmental Microbiology | 2000

Bioaugmentation of Activated Sludge by an Indigenous 3-Chloroaniline-Degrading Comamonas testosteroni Strain, I2gfp

Nico Boon; Johan Goris; Paul De Vos; Willy Verstraete; Eva M. Top

ABSTRACT A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distalmeta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.


Systematic and Applied Microbiology | 2002

Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., Nodulate the Roots of Tropical Legumes

Peter Vandamme; Johan Goris; Wen-Ming Chen; Paul De Vos; Anne Willems

The taxonomic status of five root nodule isolates from tropical legumes was determined using a polyphasic taxonomic approach. Two isolates were identified as B. caribensis, an organism originally isolated from soil in Martinique (the French West Indies). One isolate was identified as Burkholderia cepacia genomovar VI, a B. cepacia complex genomovar thus far only isolated from sputum of cystic fibrosis patients. The remaining two isolates were identified as novel Burkholderia species for which we propose the names Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. The type strains are LMG 21444T and LMG 21445T, respectively.


International Journal of Systematic and Evolutionary Microbiology | 2001

DNA-DNA hybridization study of Bradyrhizobium strains.

Anne Willems; Florence Doignon-Bourcier; Johan Goris; Renata Coopman; Philippe de Lajudie; Paul De Vos; Monique Gillis

DNA-DNA hybridizations were performed between Bradyrhizobium strains, isolated mainly from Faidherbia albida and Aeschynomene species, as well as Bradyrhizobium reference strains. Results indicated that the genus Bradyrhizobium consists of at least 11 genospecies, I to XI. The genospecies formed four subgeneric groups that were more closely related to each other (>40% DNA hybridization) than to other genospecies (<40% DNA hybridization): (i) genospecies I (Bradyrhizobium japonicum), III (Bradyrhizobium liaoningense), IV and V; (ii) genospecies VI and VIII; (iii) genospecies VII and IX; and (iv) genospecies II (Bradyrhizobium elkanii), X and XI. Photosynthetic Aeschynomene isolates were found to belong to at least two distinct genospecies in one subgeneric group. DNA-DNA hybridization data are compared with data from amplified fragment length polymorphism analysis and 165-23S rDNA spacer sequence analysis.


Applied and Environmental Microbiology | 2003

Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain

Winnie Dejonghe; Ellen Berteloot; Johan Goris; Nico Boon; Katrien Crul; Siska Maertens; Monica Höfte; Paul De Vos; Willy Verstraete; Eva M. Top

ABSTRACT The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture.


Journal of Clinical Microbiology | 2002

Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov.

Tom Coenye; Johan Goris; Theodore Spilker; Peter Vandamme; John J. LiPuma

ABSTRACT Using a polyphasic approach (including cellular protein and fatty acid analysis, biochemical characterization, 16S ribosomal DNA sequencing, and DNA-DNA hybridizations), we characterized 51 bacterial isolates recovered from respiratory secretions of cystic fibrosis (CF) patients. Our analyses showed that 24 isolates belong to taxa that have so far not (or only rarely) been reported from CF patients. These taxa include Acinetobacter sp., Bordetella hinzii, Burkholderia fungorum, Comamonas testosteroni, Chryseobacterium sp., Herbaspirillum sp., Moraxella osloensis, Pandoraea genomospecies 4, Ralstonia gilardii, Ralstonia mannitolilytica, Rhizobium radiobacter, and Xanthomonas sp. In addition, one isolate most likely represents a novel Ralstonia species, whereas nine isolates belong to novel taxa within the α-Proteobacteria. Eight of these latter isolates are classified into the novel genus Inquilinus gen. nov. as Inquilinus limosus gen. nov., sp. nov., or as Inquilinus sp. The remaining 17 isolates are characterized as members of the family Enterobacteriaceae. The recovery of these species suggests that the CF lung is an ecological niche capable of supporting the growth of a wide variety of bacteria rarely seen in clinical samples. Elucidation of the factors that account for the association between these unusual species and the respiratory tract of CF patients may provide important insights into the pathophysiology of CF infection. Because accurate identification of these organisms in the clinical microbiology laboratory may be problematic, the present study highlights the utility of reference laboratories capable of identifying unusual species recovered from CF sputum.


Research in Microbiology | 2003

Burkholderia cenocepacia sp. nov.--a new twist to an old story.

Peter Vandamme; Barry Holmes; Tom Coenye; Johan Goris; Eshwar Mahenthiralingam; John J. LiPuma; John R. W. Govan

DNA-DNA hybridisation experiments between isolates representing Burkholderia cepacia genomovar III recA lineages IIIA and IIIB reinforced the classification of both phylogenetic subgroups as a single genospecies, distinct from B. cepacia (genomovar I). A formal classification of B. cepacia genomovar III encompassing the recA lineages IIIA and IIIB, and the new recA lineages IIIC and IIID, as B. cenocepacia sp. nov., with LMG 16656 as the type strain, is proposed.


Applied and Environmental Microbiology | 2000

Effect of Dissemination of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Degradation Plasmids on 2,4-D Degradation and on Bacterial Community Structure in Two Different Soil Horizons

Winnie Dejonghe; Johan Goris; Saïd El Fantroussi; Monica Höfte; Paul De Vos; Willy Verstraete; Eva M. Top

ABSTRACT Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain,Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.


Applied and Environmental Microbiology | 2001

Genetic Diversity among 3-Chloroaniline- and Aniline-Degrading Strains of the Comamonadaceae

Nico Boon; Johan Goris; Paul De Vos; Willy Verstraete; Eva M. Top

ABSTRACT We examined the diversity of the plasmids and of the genetdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified asD. acidovorans. Both Delftia andComamonas belong to the familyComamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene fromPseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while thetdnQ sequences of BN3.1 and P. putidaUCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.


International Journal of Systematic and Evolutionary Microbiology | 2000

Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb, nov.

Tom Coenye; Enevold Falsen; Bart Hoste; Maria Ohlén; Johan Goris; Jrw Govan; Monique Gillis; Peter Vandamme

A polyphasic taxonomic study was performed on a group of isolates tentatively identified as Burkholderia cepacia, Ralstonia pickettii or Ralstonia paucula (formerly known as CDC group IVc-2). The isolates were mainly cultured from sputum of cystic fibrosis patients or from soil. SDS-PAGE of whole-cell proteins and AFLP fingerprinting distinguished at least five different species, and this was confirmed by DNA-DNA hybridizations. 16S rDNA sequence analysis of representative strains indicated that these organisms belong to the beta-subclass of the Proteobacteria, with the genera Burkholderia and Ralstonia as closest neighbours. Based on genotypic and phenotypic characteristics, the organisms were classified in a novel genus, Pandoraea. The DNA base composition of the members of the new genus is between 61.2 and 64.3 mol%. This novel genus includes four new species, Pandoraea apista (the type species) (type strain is LMG 16407T), Pandoraea pulmonicola (type strain is LMG 18106T), Pandoraea pnomenusa (type strain is LMG 18087T) and Pandoraea sputorum (type strain is LMG 18819T), and Pandoraea norimbergensis (Wittke et al. 1997) comb. nov. (type strain is LMG 18379T). The available clinical data indicate that at least some of these organisms may cause chronic infection in, and can be transmitted amongst, cystic fibrosis patients.


Systematic and Applied Microbiology | 2002

Diversity of Transconjugants that Acquired Plasmid pJP4 or pEMT1 after Inoculation of a Donor Strain in the A- and B-horizon of an Agricultural Soil and Description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov.

Johan Goris; Winnie Dejonghe; Enevold Falsen; Elke De Clerck; Ben Geeraerts; Anne Willems; Eva M. Top; Peter Vandamme; Paul De Vos

We examined the diversity of transconjugants that acquired the catabolic plasmids pJP4 or pEMT1, which encode degradation of 2,4-dichlorophenoxyacetic acid (2,4-D), in microcosms with agricultural soil inoculated with a donor strain (Dejonghe, W., Goris, J., El Fantroussi, S., Höfte, M., De Vos, P., Verstraete, W., and Top, E. M. Appl. Environ. Microbiol. 2000, p. 3297-3304). Using repetitive element PCR fingerprinting, eight different rep-clusters and six separate isolates could be discriminated among 95 transconjugants tested. Representative isolates were identified using 16S rDNA sequencing, cellular fatty acid analysis, whole-cell protein analysis and/or DNA-DNA hybridisations. Plasmids pJP4 and pEMT1 appeared to have a similar transfer and expression range, and were preferably acquired and expressed in soil by indigenous representatives of Ralstonia and Burkholderia. Two rep-clusters were shown to represent novel Burkholderia species, for which the names Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. are proposed. When easily degradable carbon sources were added together with the plasmid-bearing donor strain, also a significant proportion of Stenotrophomonas maltophilia isolates were found. The transconjugant collections isolated from A- (0-30 cm depth) and B-horizon (30-60 cm depth) soil were similar, except for B. terricola transconjugants, which were only isolated from the B-horizon.

Collaboration


Dive into the Johan Goris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nico Boon

Janssen Pharmaceutica

View shared research outputs
Top Co-Authors

Avatar

Niall A. Logan

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winnie Dejonghe

Flemish Institute for Technological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge