Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan H. J. Leveau is active.

Publication


Featured researches published by Johan H. J. Leveau.


Molecular Plant-microbe Interactions | 2000

Improved gfp and inaZ Broad-Host-Range Promoter-Probe Vectors

William G. Miller; Johan H. J. Leveau; Steven E. Lindow

A new set of broad-host-range promoter-probe vectors has been constructed. One subset contains the pVS1 and p15a replicons and confers resistance to either gentamicin or kanamycin. The other set contains the broad-host-range replicon from pBBR1 and confers resistance to kanamycin, tetracycline, ampicillin, or spectinomycin/streptomycin. Both plasmid sets are highly stable and are maintained without selection for more than 30 generations in several bacterial taxa. Each plasmid contains a promoter-probe cassette that consists of a multicloning site, containing several unique restriction sites, and gfp or inaZ as a reporter gene. The cassette is bound by transcriptional terminators to permit the insertion of strong promoters and to insulate the cassette from external transcription enabling the detection of weak or moderate promoters. The vector suite was augmented with derivatives of the kanamycin-resistant gfp promoter-probe plasmids that encode Gfp variants with different half-life times.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Appetite of an epiphyte: Quantitative monitoring of bacterial sugar consumption in the phyllosphere

Johan H. J. Leveau; Steven E. Lindow

We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pPfruB-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pPfruB-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to ≈1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.


The ISME Journal | 2012

Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce

Gurdeep Rastogi; Adrian Sbodio; Jan J. Tech; Trevor V. Suslow; Gitta Coaker; Johan H. J. Leveau

The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009–2010 crop cycle. Total bacterial populations averaged between 105 and 106 per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial ‘core’ phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.


Applied and Environmental Microbiology | 2005

Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290

Johan H. J. Leveau; Steven E. Lindow

ABSTRACT We have isolated from plant surfaces several bacteria with the ability to catabolize indole-3-acetic acid (IAA). One of them, isolate 1290, was able to utilize IAA as a sole source of carbon, nitrogen, and energy. The strain was identified by its 16S rRNA sequence as Pseudomonas putida. Activity of the enzyme catechol 1,2-dioxygenase was induced during growth on IAA, suggesting that catechol is an intermediate of the IAA catabolic pathway. This was in agreement with the observation that the oxygen uptake by IAA-grown P. putida 1290 cells was elevated in response to the addition of catechol. The inability of a catR mutant of P. putida 1290 to grow at the expense of IAA also suggests a central role for catechol as an intermediate in IAA metabolism. Besides being able to destroy IAA, strain 1290 was also capable of producing IAA in media supplemented with tryptophan. In root elongation assays, P. putida strain 1290 completely abolished the inhibitory effect of exogenous IAA on the elongation of radish roots. In fact, coinoculation of roots with P. putida 1290 and 1 mM concentration of IAA had a positive effect on root development. In coinoculation experiments on radish roots, strain 1290 was only partially able to alleviate the inhibitory effect of bacteria that in culture overproduce IAA. Our findings imply a biological role for strain 1290 as a sink or recycler of IAA in its association with plants and plant-associated bacteria.


Journal of Bacteriology | 2001

Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria.

Johan H. J. Leveau; Steven E. Lindow

We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual measurements of GFP fluorescence in growing bacterial cultures. To test the usefulness of the formula, we determined the activity of the LacI-repressible promoter P(A1/O4/O3) in response to increasing concentrations of the inducer IPTG (isopropyl-beta-D-thiogalactopyranoside) and were able to predict cooperativity between the LacI repressors on each of the two operator sites within P(A1/O4/O3). Aided by the model, we also quantified the proteolytic degradation of GFP[AAV], GFP[ASV], and GFP[LVA], which are popular variants of GFP with reduced stability in bacteria. Best described by Michaelis-Menten kinetics, the rate at which these variants were degraded was a function of the activity of the promoter that drives their synthesis: a weak promoter yielded proportionally less GFP fluorescence than a strong one. The degree of disproportionality is species dependent: the effect was more pronounced in Erwinia herbicola than in Escherichia coli. This phenomenon has important implications for the interpretation of fluorescence from bacterial reporters based on these GFP variants. The model furthermore predicted a significant effect of growth rate on the GFP content of individual bacteria, which if not accounted for might lead to misinterpretation of GFP data. In practice, our model will be helpful for prior testing of different combinations of promoter-gfp fusions that best fit the application of a particular bacterial reporter strain, and also for the interpretation of actual GFP fluorescence data that are obtained with that reporter.


Applied and Environmental Microbiology | 2011

The Multifactorial Basis for Plant Health Promotion by Plant-Associated Bacteria

Young Cheol Kim; Johan H. J. Leveau; Elizabeth A. Pierson; Leland S. Pierson; Choong-Min Ryu

ABSTRACT On plants, microbial populations interact with each other and their host through the actions of secreted metabolites. However, the combined action of diverse organisms and their different metabolites on plant health has yet to be fully appreciated. Here, the multifactorial nature of these interactions, at the organismal and molecular level, leading to the biological control of plant diseases is reviewed. To do so, we describe in detail the ecological significance of three different classes of secondary metabolites and discuss how they might contribute to biological control. Specifically, the roles of auxin, acetoin, and phenazines are considered, because they represent very different but important types of secondary metabolites. We also describe how studies of the global regulation of bacterial secondary metabolism have led to the discovery of new genes and phenotypes related to plant health promotion. In conclusion, we describe three avenues for future research that will help to integrate these complex and diverse observations into a more coherent synthesis of bacterially mediated biocontrol of plant diseases.


Current Opinion in Microbiology | 2002

Bioreporters in microbial ecology.

Johan H. J. Leveau; Steven E. Lindow

Bioreporters are effective research tools for gaining an understanding of a microbes perception of the world. Fitted with a fusion of an environmentally responsive promoter to a suitable reporter gene, a bacterial or fungal bioreporter is able to communicate its metabolic or transcriptional behavior in a habitat, and furnish us with information on the chemical, physical or biological properties of its immediate surroundings. This review details recent developments in the use of such bioreporters in microbial ecology. Emphasis is placed on reporter genes that allow detection in individual microbial cells, as they provide a high-resolution description of the habitat under investigation. In an outlook on the future of bioreporter technology, this review stresses the need to interpret the activity of a bioreporter within the context of its biology.


Plant and Soil | 2009

Molecular communication in the rhizosphere

Denis Faure; Danny Vereecke; Johan H. J. Leveau

This paper will exemplify molecular communications in the rhizosphere, especially between plants and bacteria, and between bacteria and bacteria. More specifically, we describe signalling pathways that allow bacteria to sense a wide diversity of plant signals, plants to respond to bacterial infection, and bacteria to coordinate gene expression at population and community level. Thereafter, we focus on mechanisms evolved by bacteria and plants to disturb bacterial signalling, and by bacteria to modulate hormonal signalling in plants. Finally, the dynamics of signal exchange and its biological significance we elaborate on the cases of Rhizobium symbiosis and Agrobacterium pathogenesis.


Environmental Microbiology | 2010

The bacterial genus Collimonas mycophagy, weathering, and other adaptive solutions to life in oligotrophic soil environments

Johan H. J. Leveau; Stéphane Uroz; Wietse de Boer

This minireview provides a synopsis of past and present research on the biology and ecology of members of the bacterial genus Collimonas. From the distribution, abundance and functional behaviours of these so-called collimonads emerges a general picture of bacterial adaptation to low-nutrient soil environments. Among these adaptations is the ability to extract nutrients from living fungi (mycophagy) and from rocks and minerals (weathering). This unique combination of properties will be discussed in the context of other interactions that collimonads have with their biotic and abiotic surroundings, such as the ability to inhibit fungal growth (fungistasis), protect plant roots from fungal disease (biocontrol), and degrade natural polymers and synthetic pollutants (biodegradation). Future research on Collimonas is expected to take advantage of the genomic tools and resources that are becoming available to uncover and describe the genes and gene functions that distinguish this group of bacteria and are the basis for its phenotypes. Potential applications of collimonads include the control of unwanted fungi, for example in agriculture, their use as biological indicators of soil quality and fertility, and as a source of bioactive compounds.


Fems Microbiology Letters | 2013

New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches.

Gurdeep Rastogi; Gitta Coaker; Johan H. J. Leveau

The phyllosphere is an ecologically and economically important ecosystem that hosts a large and diverse microbial community. Phyllosphere microbiota play a critical role in protecting plants from diseases as well as promoting their growth by various mechanisms. There are serious gaps in our understanding of how and why microbiota composition varies across spatial and temporal scales, the ecology of leaf surface colonizers and their interactions with their host, and the genetic adaptations that enable phyllosphere survival of microorganisms. These gaps are due in large part to past technical limitations, as earlier studies were restricted to the study of culturable bacteria only and used low-throughput molecular techniques to describe community structure and function. The availability of high-throughput and cost-effective molecular technologies is changing the field of phyllosphere microbiology, enabling researchers to begin to address the dynamics and composition of the phyllosphere microbiota across a large number of samples with high, in-depth coverage. Here, we discuss and connect the most recent studies that have used next-generation molecular techniques such as metagenomics, proteogenomics, genome sequencing, and transcriptomics to gain new insights into the structure and function of phyllosphere microbiota and highlight important challenges for future research.

Collaboration


Dive into the Johan H. J. Leveau's collaboration.

Top Co-Authors

Avatar

Wietse de Boer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Uroz

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.F. de Boer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan J. Tech

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge