Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Hedborg is active.

Publication


Featured researches published by Johan Hedborg.


computer vision and pattern recognition | 2012

Rolling shutter bundle adjustment

Johan Hedborg; Per-Erik Forssén; Michael Felsberg; Erik Ringaby

This paper introduces a bundle adjustment (BA) method that obtains accurate structure and motion from rolling shutter (RS) video sequences: RSBA. When a classical BA algorithm processes a rolling shutter video, the resultant camera trajectory is brittle, and complete failures are not uncommon. We exploit the temporal continuity of the camera motion to define residuals of image point trajectories with respect to the camera trajectory. We compare the camera trajectories from RSBA to those from classical BA, and from classical BA on rectified videos. The comparisons are done on real video sequences from an iPhone 4, with ground truth obtained from a global shutter camera, rigidly mounted to the iPhone 4. Compared to classical BA, the rolling shutter model requires just six extra parameters. It also degrades the sparsity of the system Jacobian slightly, but as we demonstrate, the increase in computation time is moderate. Decisive advantages are that RSBA succeeds in cases where competing methods diverge, and consistently produces more accurate results.


international conference on computer vision | 2011

Structure and motion estimation from rolling shutter video

Johan Hedborg; Erik Ringaby; Per-Erik Forssén; Michael Felsberg

The majority of consumer quality cameras sold today have CMOS sensors with rolling shutters. In a rolling-shutter camera, images are read out row by row, and thus each row is exposed during a different time interval. A rolling-shutter exposure causes geometric image distortions when either the camera or the scene is moving, and this causes state-of-the-art structure and motion algorithms to fail. We demonstrate a novel method for solving the structure and motion problem for rolling-shutter video. The method relies on exploiting the continuity of the camera motion, both between frames, and across a frame. We demonstrate the effectiveness of our method by controlled experiments on real video sequences. We show, both visually and quantitatively, that our method outperforms standard structure and motion, and is more accurate and efficient than a two-step approach, doing image rectification and structure and motion.


Journal of Real-time Image Processing | 2007

Real-time view-based pose recognition and interpolation for tracking initialization

Michael Felsberg; Johan Hedborg

In this paper we propose a new approach to real-time view-based pose recognition and interpolation. Pose recognition is particularly useful for identifying camera views in databases, video sequences, video streams, and live recordings. All of these applications require a fast pose recognition process, in many cases video real-time. It should further be possible to extend the database with new material, i.e., to update the recognition system online. The method that we propose is based on P-channels, a special kind of information representation which combines advantages of histograms and local linear models. Our approach is motivated by its similarity to information representation in biological systems but its main advantage is its robustness against common distortions such as clutter and occlusion. The recognition algorithm consists of three steps: (1) low-level image features for color and local orientation are extracted in each point of the image; (2) these features are encoded into P-channels by combining similar features within local image regions; (3) the query P-channels are compared to a set of prototype P-channels in a database using a least-squares approach. The algorithm is applied in two scene registration experiments with fisheye camera data, one for pose interpolation from synthetic images and one for finding the nearest view in a set of real images. The method compares favorable to SIFT-based methods, in particular concerning interpolation. The method can be used for initializing pose-tracking systems, either when starting the tracking or when the tracking has failed and the system needs to re-initialize. Due to its real-time performance, the method can also be embedded directly into the tracking system, allowing a sensor fusion unit choosing dynamically between the frame-by-frame tracking and the pose recognition.


international symposium on visual computing | 2009

Fast and Accurate Structure and Motion Estimation

Johan Hedborg; Per-Erik Forssén; Michael Felsberg

This paper describes a system for structure-and-motion estimation for real-time navigation and obstacle avoidance. We demonstrate a technique to increase the efficiency of the 5-point solution to the relative pose problem. This is achieved by a novel sampling scheme, where we add a distance constraint on the sampled points inside the RANSAC loop, before calculating the 5-point solution. Our setup uses the KLT tracker to establish point correspondences across time in live video. We also demonstrate how an early outlier rejection in the tracker improves performance in scenes with plenty of occlusions. This outlier rejection scheme is well suited to implementation on graphics hardware. We evaluate the proposed algorithms using real camera sequences with fine-tuned bundle adjusted data as ground truth. To strenghten our results we also evaluate using sequences generated by a state-of-the-art rendering software. On average we are able to reduce the number of RANSAC iterations by half and thereby double the speed.


scandinavian conference on image analysis | 2007

Real-time visual recognition of objects and scenes using P-channel matching

Michael Felsberg; Johan Hedborg

In this paper we propose a new approach to real-time view-based object recognition and scene registration. Object recognition is an important sub-task in many applications, as e.g., robotics, retrieval, and surveillance. Scene registration is particularly useful for identifying camera views in databases or video sequences. All of these applications require a fast recognition process and the possibility to extend the database with new material, i.e., to update the recognition system online. The method that we propose is based on P-channels, a special kind of information representation which combines advantages of histograms and local linear models. Our approach is motivated by its similarity to information representation in biological systems but its main advantage is its robustness against common distortions as clutter and occlusion. The recognition algorithm extracts a number of basic, intensity invariant image features, encodes them into P-channels, and compares the query P-channels to a set of prototype P-channels in a database. The algorithm is applied in a cross-validation experiment on the COIL database, resulting in nearly ideal ROC curves. Furthermore, results from scene registration with a fish-eye camera are presented.


computer vision and pattern recognition | 2014

Robust Three-View Triangulation Done Fast

Johan Hedborg; Andreas Robinson; Michael Felsberg

Estimating the position of a 3-dimensional world point given its 2-dimensional projections in a set of images is a key component in numerous computer vision systems. There are several methods dealing with this problem, ranging from sub-optimal, linear least square triangulation in two views, to finding the world point that minimized the L2-reprojection error in three views. This leads to the statistically optimal estimate under the assumption of Gaussian noise. In this paper we present a solution to the optimal triangulation in three views. The standard approach for solving the three-view triangulation problem is to find a closed-form solution. In contrast to this, we propose a new method based on an iterative scheme. The method is rigorously tested on both synthetic and real image data with corresponding ground truth, on a midrange desktop PC and a Raspberry Pi, a low-end mobile platform. We are able to improve the precision achieved by the closed-form solvers and reach a speed-up of two orders of magnitude compared to the current state-of-the-art solver. In numbers, this amounts to around 300K triangulations per second on the PC and 30K triangulations per second on Raspberry Pi.


2013 IEEE Workshop on Robot Vision (WORV) | 2013

Autonomous navigation and sign detector learning

Liam F. Ellis; Nicolas Pugeault; Kristoffer Öfjäll; Johan Hedborg; Richard Bowden; Michael Felsberg

This paper presents an autonomous robotic system that incorporates novel Computer Vision, Machine Learning and Data Mining algorithms in order to learn to navigate and discover important visual entities. This is achieved within a Learning from Demonstration (LfD) framework, where policies are derived from example state-to-action mappings. For autonomous navigation, a mapping is learnt from holistic image features (GIST) onto control parameters using Random Forest regression. Additionally, visual entities (road signs e.g. STOP sign) that are strongly associated to autonomously discovered modes of action (e.g. stopping behaviour) are discovered through a novel Percept-Action Mining methodology. The resulting sign detector is learnt without any supervision (no image labeling or bounding box annotations are used). The complete system is demonstrated on a fully autonomous robotic platform, featuring a single camera mounted on a standard remote control car. The robot carries a PC laptop, that performs all the processing on board and in real-time.


2013 IEEE Workshop on Robot Vision (WORV) | 2013

Fast iterative five point relative pose estimation

Johan Hedborg; Michael Felsberg

Robust estimation of the relative pose between two cameras is a fundamental part of Structure and Motion methods. For calibrated cameras, the five point method together with a robust estimator such as RANSAC gives the best result in most cases. The current state-of-the-art method for solving the relative pose problem from five points is due to Nistér [9], because it is faster than other methods and in the RANSAC scheme one can improve precision by increasing the number of iterations. In this paper, we propose a new iterative method, which is based on Powells Dog Leg algorithm. The new method has the same precision and is approximately twice as fast as Nisters algorithm. The proposed method is easily extended to more than five points while retaining a efficient error metrics. This makes it also very suitable as an refinement step. The proposed algorithm is systematically evaluated on three types of datasets with known ground truth.


SSBA, Swedish Symposium in Image Analysis 2007, 14-15 March, Linköping, Sweden | 2007

KLT Tracking Implementation on the GPU

Johan Hedborg; Johan Skoglund; Michael Felsberg


Archive | 2007

Real time camera ego-motion compensation and lens undistortion on GPU

Johan Hedborg; Björn Johansson

Collaboration


Dive into the Johan Hedborg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge