Johan Jacksén
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johan Jacksén.
Journal of Separation Science | 2014
Valeria Springer; Johan Jacksén; Patrik Ek; Adriana G. Lista; Åsa Emmer
A simple CE-UV method was developed for the simultaneous determination of ciprofloxacin, norfloxacin, and ofloxacin in milk samples. The optimum separation was obtained using a 20 mM ammonium dihydrogenphosphate solution with 2 mM cetyltrimethylammonium bromide at pH 3.0 as the BGE. Satisfactory resolution for structurally very similar analytes, like norfloxacin and ciprofloxacin, was achieved without including any organic solvent. Milk samples were prepared using a simple/extraction procedure based on acidic protein precipitation followed by an SPE step using only 5 mg of multiwalled carbon nanotubes as the sorbent material. The LODs for the three compounds were between 7.5 and 11.6 μg/L and the RSDs for the peak areas were between 2.6 and 4.9%. The complete method was applied to spiked real milk samples with satisfactory recoveries for all analytes (84-106%).
Electrophoresis | 2012
Saara Mikkonen; Maria Khihon Rokhas; Johan Jacksén; Åsa Emmer
In this work, a method for preconcentrating samples in 1 cm long, 50–150 μm wide open microchannels is presented. Platinum electrodes were positioned at the channel ends, voltage was applied, and charged analyte was preconcentrated at the oppositely charged side during continuous supply of sample. The preconcentration was initially studied in a closed system, where an influence on the analyte position from a pH gradient, generated by water electrolysis, was observed. In the open channel, the analyte distribution after preconcentration was evaluated using MALDI‐MS with the channel as MALDI target. MALDI matrix was applied with an airbrush or by electrospray matrix deposition and by using the latter technique higher degrees of crystallization in the channels were obtained. After preconcentrating a 1 nM cytochrome c solution for 5 min, corresponding to a supplied amount of 1.25 fmol, a signal on the cathodic channel end could be detected. When a solution of cytochrome c trypsin digest was supplied, the peptides were preconcentrated at different positions along the channel depending on their charge.
Chromatographia | 2015
Valeria Springer; Johan Jacksén; Patrik Ek; Adriana G. Lista; Åsa Emmer
AbstractA novel appro ach for the determination of ciprofloxacin, norfloxacin and ofloxacin by capillary electrophoresis and off-line capillary electrophoresis–matrix-assisted laser desorption/ionization-time of flight-mass spectrometry coupling for the confirmation of analyte identities is presented. A polymer capillary coating was proposed with the aim to minimize suppression of the MS signal caused by the CE solution components. The fluoroquinolones were successfully separated and determined by CE-UV followed by fractionation onto a MALDI plate and off-line MS characterization. Full-cream and low-fat milk samples were used to illustrate that the proposed method represents an efficient alternative for fluoroquinolone antibiotics determination in milk.
Analytical Biochemistry | 2012
Johan Jacksén; Åsa Emmer
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for analysis of macromolecules like peptides and proteins. The analysis procedure is generally simple but must be adapted to the characteristics of the analytes. Therefore, specific matrices suitable for, e.g., hydrophobic proteins and peptides that are difficult to analyze would be preferable in order to optimize the outcome. In the present work, 2,6-dihydroxyacetophenone (DHAP) was shown to be beneficial in comparison to DHB for intact bacteriorhodopsin (BR) as well as for chemically digested BR.
Journal of the American Society for Mass Spectrometry | 2017
Joakim Romson; Johan Jacksén; Åsa Emmer
AbstractHere we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate. Graphical Abstractᅟ
Journal of Chromatography B | 2010
Johan Jacksén; Kenneth Dahl; Ann-Therese Karlberg; Theres Redeby; Åsa Emmer
A protocol using enzymatic digestion, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis with laser induced fluorescence detection (CE-LIF) for the investigation of the binding of the fluorescent contact allergen fluorescein isothiocyanate (FITC) to the 66 kDa large protein bovine serum albumin (BSA), as a model system for protein-hapten binding in the skin, is presented. Mass spectra of BSA-FITC digestions, using trypsin and chymotrypsin, respectively, provided sequence coverage of 97%. To investigate the number of FITC-bound peptides using CE-LIF separation, three different buffer salts at four different pH levels were evaluated. The use of 20 mM sodium citrate pH 6.5 as well as 20 mM sodium phosphate pH 6.5 or pH 7.5 as background electrolyte revealed high numbers of peptides with at least one bound FITC. The effect of the electrolyte counter ion on MALDI-MS was investigated and was found to have effect on the MALDI spectra signal-to-noise (S/N) at 50 mM but not at 10 mM. Of the 60 theoretical FITC-binding sites in BSA this MALDI-MS protocol presents 30 defined, 28 possible and 2 non-binding sites for FITC.
Electrophoresis | 2014
Maria Khihon Rokhas; Saara Mikkonen; Juliane Beyer; Johan Jacksén; Åsa Emmer
In the present work, monosaccharides from pulp samples and single wood fibers were analyzed with CE, using indirect detection due to the lack of chromophores on the monosaccharides. The hydrolysis degradation of cellulose and hemicellulose into monosaccharides was performed using TFA, either in bulk scale or in microscale. In the microscale, one single wood fiber was hydrolyzed in an open microchannel manufactured on a silicon microchip with the dimensions 50 μm × 50 μm (length 1 or 3 cm). The low monosaccharide amounts derived from a single fiber implied that a preconcentration step was necessary to increase the detectability. Thus, an electromigration preconcentration of the hydrolyzed samples was performed within the microchannel, which resulted in a significantly enhanced signal intensity of the monosaccharides. In addition to the experimental study, computer simulations were performed regarding the preconcentration step of monosaccharides. The results from these simulations correlated well with the experimental results.
Electrophoresis | 2007
Johan Jacksén; Thomas Frisk; Theres Redeby; Varun Parmar; Wouter van der Wijngaart; Göran Stemme; Åsa Emmer
Analytical Chemistry | 2016
Saara Mikkonen; Johan Jacksén; Johan Roeraade; Wolfgang Thormann; Åsa Emmer
Journal of Separation Science | 2006
Johan Jacksén; Theres Redeby; Åsa Emmer