Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Karlsson is active.

Publication


Featured researches published by Johan Karlsson.


Acta Biomaterialia | 2013

Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone

Necati Harmankaya; Johan Karlsson; Anders Palmquist; Mats Halvarsson; Kazuyo Igawa; Martin Andersson; Pentti Tengvall

This study tested the hypothesis that osteoporosis drug-loaded mesoporous TiO2 implant coatings can be used to improve bone-implant integration. Two osteoporosis drugs, Alendronate (ALN) and Raloxifene (RLX), were immobilized in nanoporous oxide films prepared on Ti screws and evaluated in vivo in rat tibia. The drug release kinetics were monitored in vitro by quartz crystal microbalance with dissipation and showed sustained release of both drugs. The osteogenic response after 28days of implantation was evaluated by quantitative polymerase chain reaction (qPCR), removal torque, histomorphometry and ultrastructural interface analysis. The drug-loaded implants showed significantly improved bone fixation. In the case of RLX, stronger bone-remodelling activity was observed compared with controls and ALN-loaded implants. The ultrastructural interface analysis revealed enhanced apatite formation inside the RLX coating and increased bone density outside the ALN coating. Thus, this novel combination of a thin mesoporous TiO2 carrier matrix and appropriate drugs can be used to accelerate implant fixation in trabecular bone.


Acta Biomaterialia | 2012

In vivo biomechanical stability of osseointegrating mesoporous TiO(2) implants

Johan Karlsson; Ryo Jimbo; Hoda Mashadi Fathali; Humberto Osvaldo Schwartz-Filho; Mariko Hayashi; Mats Halvarsson; Ann Wennerberg; Martin Andersson

Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO(2) coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.


Biomaterials | 2016

Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants

Jordan Raphel; Johan Karlsson; Silvia Galli; Ann Wennerberg; Christopher Lindsay; Matthew G. Haugh; Jukka Pajarinen; Stuart B. Goodman; Ryo Jimbo; Martin Andersson; Sarah C. Heilshorn

Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure.


Nano Letters | 2014

Atomically resolved tissue integration

Johan Karlsson; Gustav Sundell; Mattias Thuvander; Martin Andersson

In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.


Acta Biomaterialia | 2014

Local release of magnesium from mesoporous TiO2 coatings stimulates the peri-implant expression of osteogenic markers and improves osteoconductivity in vivo.

Silvia Galli; Yoshihito Naito; Johan Karlsson; Wenxiao He; Ikuya Miyamoto; Ying Xue; Martin Andersson; Kamal Mustafa; Ann Wennerberg; Ryo Jimbo

Local release of Mg ions from titanium implant surfaces has been shown to enhance implant retention and integration. To clarify the biological events that lead to this positive outcome, threaded implants coated with mesoporous TiO2 thin films were loaded with Mg-ions and placed in the tibia of rabbits for 3weeks, after surface characterization. Non-loaded mesoporous coated implants were used as controls. Peri-implant gene expression of a set of osteogenic and inflammatory assays was quantified by means of real-time quantitative polymerase chain reaction. The expression of three osteogenic markers (OC, RUNX-2 and IGF-1) was significantly more pronounced in the test specimens, suggesting that the release of Mg ions directly at the implant sites may stimulate an osteogenic environment. Furthermore, bone healing around implants was evaluated on histological slides and by diffraction-enhanced imaging (DEI), using synchrotron radiation. The histological analysis demonstrated new bone formation around all implants, without negative responses, with a significant increase in the number of threads filled with new bone for test surfaces. DEI analysis attested the high mineral content of the newly formed bone. Improved surface osteoconductivity and increased expression of genes involved in the bone regeneration were found for magnesium-incorporation of mesoporous TiO2 coatings.


Clinical Implant Dentistry and Related Research | 2015

Osteoconductive Potential of Mesoporous Titania Implant Surfaces Loaded with Magnesium: An Experimental Study in the Rabbit

Silvia Galli; Yoshihito Naito; Johan Karlsson; Wenxiao He; Martin Andersson; Ann Wennerberg; Ryo Jimbo

BACKGROUND Mesoporous coatings enable incorporation of functional substances and sustainedly release them at the implant site. One bioactive substance that can be incorporated in mesoporous is magnesium, which is strongly involved in bone metabolism and in osteoblast interaction. PURPOSE The aim of this experimental study was to evaluate the effect of incorporation of magnesium into mesoporous coatings of oral implants on early stages of osseointegration. MATERIAL AND METHODS Titanium implants were coated with thin films of mesoporous TiO2 having pore diameters of 6 nm and were loaded with magnesium. The implant surfaces were extensively characterized by means of interferometry, atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy and then placed in the tibiae of 10 rabbits. After 3 weeks of healing, osseointegration was evaluated by means of removal torque testing and histology and histomorphometry. RESULTS Histological and biomechanical analyses revealed no side effects and successful osseointegration of the implants. The biomechanical evaluation evidenced a significant effect of magnesium doping on strengthening the implant-bone interface. CONCLUSIONS A local release of magnesium from the implant surfaces enhances implant retention at the early stage of healing (3 weeks after implantation), which is highly desirable for early loading of the implant.


Journal of Biomedical Materials Research Part A | 2014

In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating

Francesca Cecchinato; Ying Xue; Johan Karlsson; Wenxiao He; Ann Wennerberg; Kamal Mustafa; Martin Andersson; Ryo Jimbo

This work aimed to evaluate the in vitro response of Transfected Human Foetal Osteoblast (hFOB) cultured on a magnesium-loaded mesoporous TiO2 coating. The application of mesoporous films on titanium implant surfaces has shown very promising potential to enhance osseointegration. This type of coating has the ability to act as a framework to sustain bioactive agents and different drugs. Magnesium is the element that, after calcium, is the most frequently used to dope titanium implant surfaces, since it is crucial for protein formation, growth factor expression, and aids for bone mineral deposition on implant surfaces. Mesoporous TiO2 films with an average pore-size of 6 nm were produced by the evaporation-induced self-assembly method (EISA) and deposited onto titanium discs. Magnesium loading was performed by soaking the mesoporous TiO2 discs in a magnesium chloride solution. Surface characterization was conducted by SEM, XPS, optical interferometry, and AFM. Magnesium release profile was assessed at different time points using a Magnesium Detection kit. Cell morphology and spreading were observed with SEM. The cytoskeletal organization was stained with TRITC-conjugated Phalloidin and cell viability was evaluated through a mitochondrial colorimetric (MTT) assay. Furthermore, gene expression of bone markers and cell mineralization were analyzed by real time RT-PCR and alizarin-red staining, respectively. The surface chemical analysis by XPS revealed the successful adsorption of magnesium to the mesoporous coating. The AFM measurements revealed the presence of a nanostructured surface roughness. Osteoblasts viability and adhesion as well as the gene expression were unaffected by the addition of magnesium possibly due to its rapid burst release, however, were enhanced by the 3D nanostructure of the TiO2 layer.


International Journal of Nanomedicine | 2015

Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

Johan Karlsson; Saba Atefyekta; Martin Andersson

The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.


International Journal of Nanomedicine | 2016

Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release.

Saba Atefyekta; Batur Ercan; Johan Karlsson; Erik N. Taylor; Stanley Chung; Thomas J. Webster; Martin Andersson

Implant-associated infections are undesirable complications that might arise after implant surgery. If the infection is not prevented, it can lead to tremendous cost, trauma, and even life threatening conditions for the patient. Development of an implant coating loaded with antimicrobial substances would be an effective way to improve the success rate of implants. In this study, the in vitro efficacy of mesoporous titania thin films used as a novel antimicrobial release coating was evaluated. Mesoporous titania thin films with pore diameters of 4, 6, and 7 nm were synthesized using the evaporation-induced self-assembly method. The films were characterized and loaded with antimicrobial agents, including vancomycin, gentamicin, and daptomycin. Staphylococcus aureus and Pseudomonas aeruginosa were used to evaluate their effectiveness toward inhibiting bacterial colonization. Drug loading and delivery were studied using a quartz crystal microbalance with dissipation monitoring, which showed successful loading and release of the antibiotics from the surfaces. Results from counting bacterial colony-forming units showed reduced bacterial adhesion on the drug-loaded films. Interestingly, the presence of the pores alone had a desired effect on bacterial colonization, which can be attributed to the documented nanotopographical effect. In summary, this study provides significant promise for the use of mesoporous titania thin films for reducing implant infections.


Materials Science and Engineering: C | 2015

Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation

Francesca Cecchinato; Johan Karlsson; Letizia Ferroni; Chiara Gardin; Silvia Galli; Ann Wennerberg; Barbara Zavan; Martin Andersson; Ryo Jimbo

The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO2) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (Sdr) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial-cell osteogenic interaction.

Collaboration


Dive into the Johan Karlsson's collaboration.

Top Co-Authors

Avatar

Martin Andersson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mats Halvarsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wenxiao He

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saba Atefyekta

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge