Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Keulemans is active.

Publication


Featured researches published by Johan Keulemans.


Theoretical and Applied Genetics | 1998

Use of the multi-allelic self-incompatibility gene in apple to assess homozygocity in shoots obtained through haploid induction

L Verdoodt; A.A. Van Haute; Inge J.W.M. Goderis; K De Witte; Johan Keulemans; W. Broothaerts

Abstract To obtain homozygous genotypes of apple, we have induced haploid development of either the female or the male gametes by parthenogenesis in situ and anther culture, respectively. Of the shoots obtained, which were mainly of a non-haploid nature, some could be derived from fertilised egg cells or from sporophytic anther tissue. In order to select the shoots having a true haploid origin, and thus homozygotes, we decided to use the single multi-allelic self-incompatibility gene as a molecular marker to discriminate homozygous from heterozygous individuals. The rationale behind this approach was that diploid apple cultivars contain 2 different alleles of the S-gene and therefore the haploid induced shoots obtained from them should have only one of the alleles of the single parent. The parental cultivars used were ‘Idared’ (parthenogenesis in situ) and ‘Braeburn’ (androgenesis), and their S-genotypes were known, except for 1 of the ‘Braeburn’S-alleles. To stimulate parthenogenetic development ‘Idared’ styles were pollinated with irradiated ‘Baskatong’ pollen, the S-alleles of the latter (2n) cultivar were also unknown. The cloning and sequence analysis of these 3 unidentified S-alleles, 1 from ‘Braeburn’ and 2 from ‘Baskatong’ is described, and we show that they correspond to the S24-, S26- and S27-alleles. We have optimised a method for analysis of the S-alleles of ‘Idared/Baskatong’- or ‘Braeburn’-derived in vitro plant tissues and have shown that this approach can be applied for the screening of the in vitro shoots for their haploid origin.


Plant Physiology | 2006

Genetic control of fruit vitamin C contents

Mark W. Davey; Katrien Kenis; Johan Keulemans

An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.


Journal of Agricultural and Food Chemistry | 2009

Application of Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIRS) to Determine Carotenoid Contents in Banana (Musa spp.) Fruit Pulp

Mark W. Davey; Wouter Saeys; Ellen Hof; Herman Ramon; Rony Swennen; Johan Keulemans

The analysis of carotenoids is complicated by the tendency of these compounds to react with radical species, leading to oxidative breakdown and isomerization during extraction. Therefore, protocols should be rapid and avoid unnecessary exposure to heat, acids, and so forth. Here, we evaluate the use of visible and near infrared reflectance spectroscopy (Vis/NIRS) to measure carotenoid contents in fruit from 28 Musa (banana and plantain) varieties. Carotenoid contents were first quantified using standardized RP-HPLC protocols, and these results were then used to develop algorithms to predict carotenoid contents from Vis/NIR spectra of the same samples. Cross-validation of the predictive algorithms across a genetically diverse group of varieties demonstrated that correlation coefficients between the HPLC measurements and the Vis/NIRS predictions varied from good for the total carotenoids and beta-carotene fractions (r(2)(cv), 0.84, 0.89) to reasonable for alpha-carotene and cis-carotenes (r(2)(cv), 0.61, 0.66), but there was only a poor correlation (r(2)(cv), 0.30) for the minor lutein component. Nonetheless, since approximately 90% of the Musa carotenoids consist of only alpha- and beta-carotene, results indicate that Vis/NIRS can be used for the high-throughput screening of fruit pulp samples for vitamin A nutritional content on the basis of their total carotenoids content.


Plant Physiology | 2012

Targeted Systems Biology Profiling of Tomato Fruit Reveals Coordination of the Yang Cycle and a Distinct Regulation of Ethylene Biosynthesis during Postclimacteric Ripening

Bram Van de Poel; Inge Bulens; Aikaterina Markoula; Maarten Hertog; Rozemarijn Dreesen; Markus Wirtz; Sandy Vandoninck; Yasmin Oppermann; Johan Keulemans; Ruediger Hell; Etienne Waelkens; Maurice De Proft; Margret Sauter; Bart M. Nicolaï; Annemie Geeraerd

The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.


BMC Plant Biology | 2012

Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars

Ifigeneia Mellidou; Johan Keulemans; Angelos K. Kanellis; Mark W. Davey

BackgroundTo gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the ‘low-’ and ‘high-AsA’ tomato cultivars ‘Ailsa Craig’ and ‘Santorini’ respectively.ResultsThe two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown (‘Ailsa Craig’) or decreased rates of AsA recycling (‘Santorini’), depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1), and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3) correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in ‘Ailsa Craig’, and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe ‘Santorini’ fruits.ConclusionsResults indicate that ‘Ailsa Craig’ and ‘Santorini’ use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar (‘Ailsa Craig’), alternative routes of AsA biosynthesis may supplement biosynthesis via L-galactose, while in the high-AsA cultivar (‘Santorini’), enhanced AsA recycling activities appear to be responsible for AsA accumulation in the later stages of ripening. Gene expression studies indicate that expression of SlGGP1 and two orthologues of SlMDHAR are closely correlated with totAsA-AsA concentrations during ripening and are potentially good candidates for marker development for breeding and selection.


Plant Cell Reports | 2004

Self-fertile apple resulting from S-RNase gene silencing

W. Broothaerts; Johan Keulemans; I. Van Nerum

Self-incompatibility (SI) restricts fertilisation and fruit setting in many tree fruit crops. In apple, we have produced transgenic trees harbouring extra copies of the endogenous S-gene controlling SI. Two independent transgenic genotypes were characterised in detail. Controlled self- and cross-pollination of the flowers of trees from both genotypes over a 3-year-period showed that the transgenic lines produced normal levels of fruit and seeds after selfing. In contrast, the controls produced much less fruit following self- compared to cross-pollination. Fruit set data correlated with the results of microscopic evaluation of pollen tube growth through the pistil, which revealed inhibition after selfing in the controls but not in the transgenic lines. The self-fertile phenotype was associated with the complete absence of pistil S-RNase proteins, which are the products of the targeted S-gene. These results confirm that self-fertility was due to inhibition of expression of the S-RNase gene in the pistil, resulting in un-arrested self-pollen tube growth, and fertilisation.


Plant Physiology | 2012

Allelic Variation in Paralogs of GDP-l-Galactose Phosphorylase Is a Major Determinant of Vitamin C Concentrations in Apple Fruit

Ifigeneia Mellidou; David Chagné; William A. Laing; Johan Keulemans; Mark W. Davey

To identify the genetic factors underlying the regulation of fruit vitamin C (l-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-l-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.


Theoretical and Applied Genetics | 2001

Re-examination of the self-incompatibility genotype of apple cultivars containing putative 'new' S-alleles

I. Van Nerum; M. Geerts; A.A. Van Haute; Johan Keulemans; W. Broothaerts

Abstract Recently, the self-incompatibility (S-) genotypes of 56 apple cultivars were examined by protein analysis, which led to the identification by Boskovic and Tobutt of 14 putative ’new’ S-alleles, S12 to S25. This paper reports a re-examination of the S-genotypes of some of these cultivars through S-allele ’specific’ PCR and sequence analysis. The results obtained by this analysis indicated that the number of S-alleles that are present in apple is probably smaller than the number proposed by Boskovic and Tobutt. The existence of three ’new’ S-alleles (S20, S22 and S24) was confirmed. The existence of two other putative ’new’ S-alleles (S23 and S25) was, however, contradicted. The coding sequences of the S-alleles that correspond to the S10 and the S25 ribonuclease bands as well as those corresponding to the S22 and the S23 ribonuclease bands were shown to be identical in sequence. Interestingly, the S-allele corresponding to the S22 and the S23 ribonuclease bands shared a high sequence identity (99% identity) with S27, which was previously cloned and sequenced from Baskatong, but which was not included in the analysis conducted by Boskovic and Tobutt. Both S-alleles only differ in point mutations, which are not translated into differences in amino-acid sequence. To our knowledge, this is the first report of two S-alleles that differ at the nucleotide level but still encode for identical S-RNases. The implications of these observations for determining the S-genotypes of plants by PCR analysis or protein analysis are discussed.


Remote Sensing | 2009

Hyperspectral Reflectance and Fluorescence Imaging to Detect Scab Induced Stress in Apple Leaves

Stephanie Delalieux; Annemarie Auwerkerken; Willem Verstraeten; Ben Somers; Roland Valcke; Stefaan Lhermitte; Johan Keulemans; Pol Coppin

Abstract: Apple scab causes significant losses in the production of this fruit. A timely and more site-specific monitoring and spraying of the disease could reduce the number of applications of fungicides in the fruit industry. The aim of this leaf-scale study therefore lies in the early detection of apple scab infections in a non-invasive and non-destructive way. In order to attain this objective, fluorescence- and hyperspectral imaging techniques were used. An experiment was conducted under controlled environmental conditions, linking hyperspectral reflectance and fluorescence imaging measurements to scab infection symptoms in a susceptible apple cultivar ( Malus x domestica Borkh. cv. Braeburn). Plant stress was induced by inoculation of the apple plants with scab spores. The quantum efficiency of Photosystem II (PSII) photochemistry was derived from fluorescence images of leaves under light adapted conditions. Leaves inoculated with scab spores were expected


Food Microbiology | 2012

Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry

Thomas Vandendriessche; Johan Keulemans; Annemie Geeraerd; Bart Nicolai; Maarten Hertog

Grey mold (Botrytis cinerea) is one of the major phytopathogens causing serious losses during strawberry postharvest and storage. B. cinerea-host interaction affect emissions of volatile compounds during infection resulting in a characteristic earthy, mushroom odor. Therefore, the objective of this study was to evaluate two analytical techniques based on fast volatile analysis on their performance for monitoring evolution and early detection of B. cinerea infections in strawberry. In a first experiment headspace multi-capillary column-ion mobility spectrometry (HS MCC-IMS) has been successfully used to evaluate development of strawberry aroma during shelflife. In a second experiment the same technique has been used to detect the degree of B. cinerea infection through changes in the volatile profile. Additionally, these samples were analyzed with headspace solid-phase-microextraction fast GC-MS (HS SPME fast GC-MS). Both HS MCC-IMS and HS SPME fast GC-MS could determine the changes in volatile composition as a function of the degree of B. cinerea infection as determined by an enzyme-linked immunosorbent assay (ELISA) and could be used to follow the evolution of infection. According to the ELISA data, some fruit were infected even without any symptoms and volatiles produced by the fungus may be overshadowed by the fruit volatiles. Therefore, both analytical techniques could not be used for early detection of B. cinerea infections. After identification of the volatile compounds and multivariate data analysis, potential biomarkers specific for B. cinerea were highlighted, being 3-methylbutanal, cis-4-decenal, 2-methyl-1-butanol, 2-methyl-1-propanol, 1-octen-3-one and 1-octen-3-ol.

Collaboration


Dive into the Johan Keulemans's collaboration.

Top Co-Authors

Avatar

Mark W. Davey

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Inge De Wit

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

W. Broothaerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

K De Witte

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mark Davey

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrien Kenis

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Maarten Hertog

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Nicolai

Catholic University of Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge