Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Lugtenburg is active.

Publication


Featured researches published by Johan Lugtenburg.


Proceedings of the National Academy of Sciences of the United States of America | 2002

(1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin.

Alain F. L. Creemers; Suzanne Kiihne; Petra H. M. Bovee-Geurts; Willem J. DeGrip; Johan Lugtenburg; Huub J. M. de Groot

Rhodopsin is a member of the superfamily of G-protein-coupled receptors. This seven α-helix transmembrane protein is the visual pigment of the vertebrate rod photoreceptor cells that mediate dim light vision. In the active binding site of this protein the ligand or chromophore, 11-cis-retinal, is covalently bound via a protonated Schiff base to lysine residue 296. Here we present the complete 1H and 13C assignments of the 11-cis-retinylidene chromophore in its ligand-binding site determined with ultra high field magic angle spinning NMR. Native bovine opsin was regenerated with 99% enriched uniformly 13C-labeled 11-cis-retinal. From the labeled pigment, 13C carbon chemical shifts could be obtained by using two-dimensional radio frequency-driven dipolar recoupling in a solid-state magic angle spinning homonuclear correlation experiment. The 1H chemical shifts were assigned by two-dimensional heteronuclear (1H-13C) dipolar correlation spectroscopy with phase-modulated Lee–Goldburg homonuclear 1H decoupling applied during the t1 period. The data indicate nonbonding interactions between the protons of the methyl groups of the retinylidene ionone ring and the protein. These nonbonding interactions are attributed to nearby aromatic acid residues Phe-208, Phe-212, and Trp-265 that are in close contact with, respectively, H-16/H-17 and H-18. Furthermore, binding of the chromophore involves a chiral selection of the ring conformation, resulting in equatorial and axial positions for CH3-16 and CH3-17.


The EMBO Journal | 1994

Asymmetric binding of the 1- and 4-C=O groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10.

R. Brudler; H. J. M. de Groot; W.B.S. van Liemt; W.F. Steggerda; R. Esmeijer; Peter Gast; Arnold J. Hoff; Johan Lugtenburg; Klaus Gerwert

Using 1‐, 2‐, 3‐ and 4‐13C site‐specifically labelled ubiquinone‐10, reconstituted at the QA site of Rhodobacter sphaeroides R26 reaction centres, the infra‐red bands dominated by the 1‐ and 4‐C = O vibration of QA are assigned in the QA(‐)‐QA difference spectra. The mode dominated by the 4‐C = O vibration is drastically downshifted in the reaction centres as compared with its absorption frequency in free ubiquinone‐10. In contrast, the mode dominated by the 1‐C = O vibration absorbs at similar frequencies in the free and the bound forms. The frequency shift of the 4‐C = O vibration is due to a large decrease in bond order and indicates a strong interaction with the protein microenvironment in the ground state. In the charge‐separated state the mode dominated by the semiquinone 4‐C = O vibration is characteristic of strong hydrogen bonding to the microenvironment, whereas the mode dominated by the 1‐C = O vibration indicates a weaker interaction. The asymmetric binding of the 1‐ and 4‐C = O groups to the protein might contribute to the factors governing different redox reactions of ubiquinone‐10 at the QA site as compared with its reactions at the QB site.


Biochimica et Biophysica Acta | 1992

Low-lying electronic states of carotenoids

Beverly DeCoster; Ronald L. Christensen; Ronald Gebhard; Johan Lugtenburg; Roya Farhoosh; Harry A. Frank

Four all-trans carotenoids, spheroidene, 3,4-dihydrospheroidene, 3,4,5,6-tetrahydrospheroidene, and 3,4,7,8-tetrahydrospheroidene, have been purified using HPLC techniques and analyzed using absorption, fluorescence and fluorescence excitation spectroscopy of room temperature solutions. This series of molecules, for which the extent of pi-electron conjugation decreases from 10 to seven carbon-carbon double bonds, exhibits a systematic crossover from S2----S0 (1(1)Bu----1(1)Ag) to S1----S0 (2(1)Ag----1(1)Ag) emission with decreasing chain length. Extrapolation of the S1----S0 transition energies indicates that the 2(1)Ag states of longer carotenoids have considerably lower energies than previously thought. The energies of the S1 states of spheroidenes and other long carotenoids are correlated with the S1 energies of their chlorophyll partners in antenna complexes of photosynthetic systems. Implications for energy transfer in photosynthetic antenna are discussed.


Biophysical Journal | 1985

Vibrational analysis of the all-trans retinal protonated Schiff base.

S.O. Smith; A. B. Myers; Richard A. Mathies; J. A. Pardoen; C. Winkel; E. M. M. Van Den Berg; Johan Lugtenburg

We have obtained Raman spectra of a series of all-trans retinal protonated Schiff-base isotopic derivatives. 13C-substitutions were made at the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 positions while deuteration was performed at position 15. Based on the isotopic shifts, the observed C--C stretching vibrations in the 1,100-1,400 cm-1 fingerprint region are assigned. Normal mode calculations using a modified Urey-Bradley force field have been refined to reproduce the observed frequencies and isotopic shifts. Comparison with fingerprint assignments of all-trans retinal and its unprotonated Schiff base shows that the major effect of Schiff-base formation is a shift of the C14--C15 stretch from 1,111 cm-1 in the aldehyde to approximately 1,163 cm-1 in the Shiff base. This shift is attributed to the increased C14--C15 bond order that results from the reduced electronegativity of the Schiff-base nitrogen compared with the aldehyde oxygen. Protonation of the Schiff base increases pi-electron delocalization, causing a 6 to 16 cm-1 frequency increase of the normal modes involving the C8--C9, C10--C11, C12--C13, and C14--C15 stretches. Comparison of the protonated Schiff base Raman spectrum with that of light-adapted bacteriorhodopsin (BR568) shows that incorporation of the all-trans protonated Schiff base into bacterio-opsin produces an additional approximately 10 cm-1 increase of each C--C stretching frequency as a result of protein-induced pi-electron delocalization. Importantly, the frequency ordering and spacing of the C--C stretches in BR568 is the same as that found in the protonated Schiff base.


Physical Chemistry Chemical Physics | 2010

Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

Alexander B. Barnes; Björn Corzilius; Melody L. Mak-Jurkauskas; Loren B. Andreas; Vikram S. Bajaj; Yoh Matsuki; Marina Belenky; Johan Lugtenburg; Jagadishwar R. Sirigiri; Richard J. Temkin; Judith Herzfeld; Robert G. Griffin

This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz (1)H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between (1)H-(1)H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.


Trends in Biochemical Sciences | 1988

Structure and function of rhodopsins from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives

Johan Lugtenburg; Richard A. Mathies; Robert G. Griffin; Judith Herzfeld

Abstract Solid-state 13 C-NMR and resonance Raman spectra of rhodopsin and bacterio-rhodopsin regenerated with isotopically-labeled retinal chromophores provide detailed molecular information about the structure and function of these light-transducing proteins.


Tetrahedron | 1973

Conformational equilibrium and photochemistry of hexa-1,3,5-trienes

P.J. Vroegop; Johan Lugtenburg; E. Havinga

Abstract Products found after photoisomerisation of some alkyl-substituted hexa-1,3,5-trienes were those predicted on the basis of the ground-state conformational equilibrium. Theoretical implications are briefly discussed.


Photochemistry and Photobiology | 2004

Photodynamic Treatment of the Dermatophyte Trichophyton rubrum and its Microconidia with Porphyrin Photosensitizers

Threes G. M. Smijs; Richard N. S. van der Haas; Johan Lugtenburg; Yan Liu; Rob de Jong; Hans J. Schuitmaker

The application of photosensitizers for the treatment of fungal infections is a new and promising development within the field of photodynamic treatment (PDT). Dermatophytes, fungi that can cause infections of the skin, hair and nails, are able to feed on keratin. Superficial mycoses are probably the most prevalent of infectious diseases in all parts of the world. One of the most important restrictions of the current therapeutic options is the return of the infection and the duration of the treatment. This is especially true in the case of infections of the nail (tinea unguium) caused by Trichophyton rubrum, an anthropophilic dermatophyte with a worldwide distribution. Recently, we demonstrated that 5,10,15‐tris(4‐methylpyridinium)‐20‐phenyl‐[21H,23H]‐porphine trichloride (Sylsens B) and deuteroporphyrin monomethylester were excellent photosensitizers toward T. rubrum when using broadband white light. This study demonstrates the photodynamic activity of these photosensitizers with red light toward both a suspension culture of T. rubrum and its isolated microconidia. The higher penetration depth of red light is important for the PDT of nail infections. In addition, we tested the photodynamic activity of a newly synthesized porphyrin, quinolino‐[4,5,6,7‐efg]‐7‐demethyl‐8‐deethylmesoporphyrin dimethylester, displaying a distinct peak in the red part of the spectrum. However, its photodynamic activity with red light toward a suspension culture of T. rubrum appeared to be only fungistatic. Sylsens B was the best photosensitizer toward both T. rubrum and its microconidia. A complete inactivation of the fungal spores and destruction of the fungal hyphae was found. In studies into the photostability, Sylsens B appeared to be photostable under the conditions used for fungal PDT. A promising result of this study is the demonstration of the complete degradation of the fungal hyphae in the time after the PDT and the inactivation of fungal spores, both with red light. These results offer the ingredients for a future treatment of fungal infections, including those of the nail.


Clinical Chemistry | 2013

Quantification of Globotriaosylsphingosine in Plasma and Urine of Fabry Patients by Stable Isotope Ultraperformance Liquid Chromatography–Tandem Mass Spectrometry

Henrik Gold; Mina Mirzaian; Nick Dekker; Maria J. Ferraz; Johan Lugtenburg; Jeroen D. C. Codée; Gijs A. van der Marel; Herman S. Overkleeft; Gabor E. Linthorst; Johanna E. M. Groener; Johannes M. F. G. Aerts; Ben J. H. M. Poorthuis

BACKGROUND Biochemical markers that accurately reflect the severity and progression of disease in patients with Fabry disease and their response to treatment are urgently needed. Globotriaosylsphingosine, also called lysoglobotriaosylceramide (lysoGb3), is a promising candidate biomarker. METHODS We synthesized lysoGb3 and isotope-labeled [5,6,7,8,9] (13)C5-lysoGb3 (internal standard). After addition of the internal standard to 25 μL plasma or 400 μL urine from patients with Fabry disease and healthy controls, samples were extracted with organic solvents and the lysoGb3 concentration was quantified by UPLC-ESI-MS/MS (ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry). Calibration curves were constructed with control plasma and urine supplemented with lysoGb3. In addition to lysoGb3, lyso-ene-Gb3 was quantified. Quantification was achieved by multiple reaction monitoring of the transitions m/z 786.4 > 282.3 [M+H](+) for lysoGb3, m/z 791.4 > 287.3 [M+H](+) for [5,6,7,8,9] (13)C5-lysoGb3, and 784.4 > 280.3 [M+H](+) for lyso-ene-Gb3. RESULTS The mean (SD) plasma lysoGb3 concentration from 10 classically affected Fabry hemizygotes was 94.4 (25.8) pmol/mL (range 52.7-136.8 pmol/mL), from 10 classically affected Fabry heterozygotes 9.6 (5.8) pmol/mL (range 4.1-23.5 pmol/mL), and from 20 healthy controls 0.4 (0.1) pmol/mL (range 0.3-0.5 pmol/mL). Lyso-ene-Gb3 concentrations were 10%-25% of total lysoGb3. The urine concentration of lysoGb3 was 40-480 times lower than in corresponding plasma samples. Lyso-ene-Gb3 concentrations in urine were comparable or even higher than the corresponding lysoGb3 concentrations. CONCLUSIONS This assay for the quantification of lysoGb3 and lyso-ene-Gb3 in human plasma and urine samples will be an important tool in the diagnosis of Fabry disease and for monitoring the effect of enzyme replacement therapy in patients with Fabry disease.


Journal of Biomolecular NMR | 2000

Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR

X. Feng; P.J.E. Verdegem; Mattias Edén; D. Sandström; Y.K. Lee; Petra H. M. Bovee-Geurts; W.J. de Grip; Johan Lugtenburg; H. J. M. de Groot; Malcolm H. Levitt

We present a solid-state NMR study of metarhodopsin-I, the pre-discharge intermediate of the photochemical signal transduction cascade of rhodopsin, which is the 41 kDa integral membrane protein that triggers phototransduction in vertebrate rod cells. The H-C10-C11-H torsional angles of the retinylidene chromophore in bovine rhodopsin and metarhodopsin-I were determined simultaneously in the photo-activated membrane-bound state, using double-quantum heteronuclear local field spectroscopy. The torsional angles were estimated to be |φ| = 160 ± 10° for rhodopsin and φ= 180 ± 25° for metarhodopsin-I. The result is consistent with current models of the photo-induced conformational transitions in the chromophore, in which the 11-Z retinal ground state is twisted, while the later photointermediates have a planar all-E conformation.

Collaboration


Dive into the Johan Lugtenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Griffin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra H. M. Bovee-Geurts

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge