Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Olofsson is active.

Publication


Featured researches published by Johan Olofsson.


The American Naturalist | 2008

Spatial Patterns and Dynamic Responses of Arctic Food Webs Corroborate the Exploitation Ecosystems Hypothesis (EEH)

Maano Aunapuu; Jonas Dahlgren; Tarja Oksanen; Doris Grellmann; Lauri Oksanen; Johan Olofsson; Üllar Rammul; Michael Schneider; Bernt Johansen; Hans Olav Hygen

According to the exploitation ecosystems hypothesis (EEH), productive terrestrial ecosystems are characterized by community‐level trophic cascades, whereas unproductive ecosystems harbor food‐limited grazers, which regulate community‐level plant biomass. We tested this hypothesis along arctic‐alpine productivity gradients at the Joatka field base, Finnmark, Norway. In unproductive habitats, mammalian predators were absent and plant biomass was constant, whereas herbivore biomass varied, reflecting the productivity of the habitat. In productive habitats, predatory mammals were persistently present and plant biomass varied in space, but herbivore biomass did not. Plant biomass of productive tundra scrublands declined by 40% when vegetation blocks were transferred to predation‐free islands. Corresponding transfer to herbivore‐free islands triggered an increase in plant biomass. Fertilization of an unproductive tundra heath resulted in a fourfold increase in rodent density and a corresponding increase in winter grazing activity, whereas the total aboveground plant biomass remained unchanged. These results corroborate the predictions of the EEH, implying that the endotherm community and the vegetation of the North European tundra behaves dynamically as if each trophic level consisted of a single population, in spite of local co‐occurrence of >20 plant species representing different major taxonomic groups, growth forms, and defensive strategies.


Nature Climate Change | 2012

Vole and lemming activity observed from space

Johan Olofsson; Hans Tømmervik; Terry V. Callaghan

In northern ecosystems, vole and lemming densities vary between years in a regular pattern known as vole and lemming cycles. This study shows that the rodents drive corresponding cycles in vegetation that can be detected from space. The findings should help understand how climate warming will affect tundra ecosystems.


Philosophical Transactions of the Royal Society B | 2013

Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers

Terry V. Callaghan; Christer Jonasson; Tomas Thierfelder; Zhenlin Yang; Henrik Hedenås; Margareta Johansson; Ulf Molau; Rik Van Bogaert; Anders Michelsen; Johan Olofsson; Dylan Gwynn-Jones; Stef Bokhorst; Gareth K. Phoenix; Jarle W. Bjerke; Hans Tømmervik; Torben R. Christensen; Edward Hanna; Eva K. Koller; Victoria L. Sloan

The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.


Oikos | 1999

On the balance between positive and negative plant interactions in harsh environments

Johan Olofsson; Jon Moen; Lauri Oksanen

Positive interactions between plants typically occur where the presence of a species ameliorates the abiotic environment for another. However, there is also a potential for resource competition to act at the same time, which creates a situation where the net outcome is a balance between positive and negative interactions. We present data from a nine-year study in two extreme high alpine habitats that was designed to test whether the effects of established Ranunculus glacialis individuals on germination and growth of Oxyria, digyna are primarily positive or negative at the altitudinal limit of vascular plants. We show net effects ranging from neutral to negative, but no positive effects were detected. We also argue that close associations between plants in these harsh environments may both ameliorate and deteriorate the abiotic environment, and that experimental manipulations are necessary to tell the difference.


Ecosystems | 2009

Trampling and spatial heterogeneity explain decomposer abundances in a sub-arctic grassland subjected to simulated reindeer grazing.

Louise Ilum Sørensen; Juha Mikola; Minna-Maarit Kytöviita; Johan Olofsson

Mammal grazing is composed of three mechanisms—removal of foliar tissue (defoliation), return of nutrients via dung and urine (fertilization), and trampling. To evaluate the relative role of these mechanisms in the effect of reindeer grazing on soil biota in northern grasslands, we subjected experimental plots in a sub-arctic alpine meadow to defoliation, fertilization (using NPK-solution), simulated trampling, and their factorial combinations once a year from 2002 to 2004 and measured the response of plants and decomposers (including microbes, nematodes, collembolans, and enchytraeids) in 2004. Trampling affected both plant and decomposer communities: the coverage of the moss Pleurozium schreberi and the sedge Carex vaginata, as well as the abundance of collembolans and enchytraeids were reduced in trampled plots. Trampling and fertilization also interacted significantly, with fertilization increasing the abundance of bacteria and bacterial-feeding and omnivorous nematodes in trampled plots only, and trampling decreasing fungal biomass in non-fertilized plots only. Defoliation had no overall effects on plants or decomposers. Nematode genera were not affected by the experimental treatments, but nematode and plant communities were significantly associated, and all decomposer biota, except collembolans, were strongly affected by the spatial heterogeneity of the study site. Our results indicate that trampling may have larger and defoliation and fertilization smaller roles than anticipated in explaining reindeer grazing effects in sub-arctic grasslands. However, even the effects of trampling seem to be outweighed by the spatial heterogeneity of decomposer abundances. This suggests that in sub-arctic grasslands spatial variation in abiotic factors can be a more important factor than grazing in controlling soil biota abundances.


Ecosystems | 2012

Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone

Elina Kaarlejärvi; Robert Baxter; Annika Hofgaard; Håkan Hytteborn; Olga Khitun; Ulf Molau; Sofie Sjögersten; Philip A. Wookey; Johan Olofsson

Tundra vegetation is responding rapidly to on-going climate warming. The changes in plant abundance and chemistry might have cascading effects on tundra food webs, but an integrated understanding of how the responses vary between habitats and across environmental gradients is lacking. We assessed responses in plant abundance and plant chemistry to warmer climate, both at species and community levels, in two different habitats. We used a long-term and multisite warming (OTC) experiment in the Scandinavian forest–tundra ecotone to investigate (i) changes in plant community composition and (ii) responses in foliar nitrogen, phosphorus, and carbon-based secondary compound concentrations in two dominant evergreen dwarf-shrubs (Empetrum hermaphroditum and Vaccinium vitis-idaea) and two deciduous shrubs (Vaccinium myrtillus and Betula nana). We found that initial plant community composition, and the functional traits of these plants, will determine the responsiveness of the community composition, and thus community traits, to experimental warming. Although changes in plant chemistry within species were minor, alterations in plant community composition drive changes in community-level nutrient concentrations. In view of projected climate change, our results suggest that plant abundance will increase in the future, but nutrient concentrations in the tundra field layer vegetation will decrease. These effects are large enough to have knock-on consequences for major ecosystem processes like herbivory and nutrient cycling. The reduced food quality could lead to weaker trophic cascades and weaker top down control of plant community biomass and composition in the future. However, the opposite effects in forest indicate that these changes might be obscured by advancing treeline forests.


Landscape Ecology | 2005

Effects of mammalian herbivores on revegetation of disturbed areas in the forest-tundra ecotone in northern Fennoscandia

Johan Olofsson; Philip E. Hulme; Lauri Oksanen; Otso Suominen

Herbivores influence the structure of plant communities in arctic-alpine ecosystems. However, little is known of the effect of herbivores on plant colonisation following disturbance, and on its variability depending on the identity of herbivores and the characteristics of the habitats. To quantify the role of large and small vertebrate herbivores, we established exclosures of two different mesh sizes around disturbed subplots in forest and nearby tundra habitats in four contrasting locations in the forest-tundra ecotone in northernmost Sweden and Norway. The study revealed that herbivores influenced the abundance but not the species composition of regenerating vegetation. Gaps were colonised by the dominant species in the surrounding vegetation. The only exception to this expectation was Empetrum nigrum, which failed to colonise gaps even though it dominated undisturbed vegetation. Significant effects of herbivory were only detected when both small and large herbivores were excluded. Herbivores decreased the abundance of three of the most common species Vaccinium myrtillus, Vaccinium vitis idaea, and Deschampsia flexuosa. The effect of herbivory on the abundance of these three species did not differ between habitats and locations. However, the composition of the regenerating vegetation differed between habitats and locations. The disturbance treatment increased the species richness on the scale of plots, habitats, and sites. However, on the scale of whole locations, all species found in disturbed areas were also found in undisturbed areas, suggesting that the natural disturbance regime in arctic landscapes is high enough to sustain colonising species.


Arctic, Antarctic, and Alpine Research | 2004

Positive and Negative Plant-Plant Interactions in Two Contrasting Arctic-Alpine Plant Communities

Johan Olofsson

Abstract Positive interactions in alpine plant communities have been reported to increase in importance with increasing altitude and exposure. Positive and negative interactions between plants might occur simultaneously, so the net plant-plant interaction is determined by the balance between positive and negative effects. I investigated the relative effect of facilitation and resource competition by surrounding dwarf shrubs on Carex bigelowii in two contrasting arctic-alpine tundra heathlands. Carex bigelowii was positively associated with dwarf shrubs on an exposed mountain ridge but negatively associated with dwarf shrubs on a protected heath. A removal experiment indicated that positive associations at the exposed site are the result of facilitation of C. bigelowii by the dwarf shrub canopy. Our understanding of arctic and alpine plant communities can be enhanced by regarding plant interactions as combinations of positive and negative components.


New Phytologist | 2011

Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses.

Otilia Johansson; Johan Olofsson; Reiner Giesler; Kristin Palmqvist

• Responses to simulated nitrogen (N) deposition with or without added phosphorus (P) were investigated for three contrasting lichen species - the N-sensitive Alectoria sarmentosa, the more N-tolerant Platismatia glauca and the N(2) -fixing Lobaria pulmonaria- in a field experiment. • To examine whether nutrient limitation differed between the photobiont and the mycobiont within the lichen, the biomass responses of the respective bionts were estimated. • The lichenized algal cells were generally N-limited, because N-stimulated algal growth in all three species. The mycobiont was P-limited in one species (A. sarmentosa), but the growth response of the mycobionts was complex, as fungal growth is also dependent on a reliable carbon export from the photobiont, which may have been the reason for the decrease of the mycobiont with N addition in P. glauca. • Our findings showed that P availability was an important factor when studying effects of N deposition, as P supply can both mitigate and intensify the negative effects of N on epiphytic lichens.


Biological Invasions | 2016

Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation

Aníbal Pauchard; Ann Milbau; Ann Albihn; Jake M. Alexander; T. Burgess; Curtis C. Daehler; Göran Englund; Franz Essl; Birgitta Evengård; Gregory Greenwood; Sylvia Haider; Jonathan Lenoir; Keith L. McDougall; Erin Muths; Martin A. Nuñez; Johan Olofsson; Loïc Pellissier; Wolfgang Rabitsch; Lisa J. Rew; Mark P. Robertson; Nathan J. Sanders; Christoph Kueffer

Abstract Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.

Collaboration


Dive into the Johan Olofsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna Witzell

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikaela Torp

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge