Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan P. de Winter is active.

Publication


Featured researches published by Johan P. de Winter.


Nature Genetics | 2003

A novel ubiquitin ligase is deficient in Fanconi anemia

Amom Ruhikanta Meetei; Johan P. de Winter; Annette L. Medhurst; Michael Wallisch; Quinten Waisfisz; Henri J. Van De Vrugt; Anneke B. Oostra; Zhijiang Yan; Chen Ling; Colin E. Bishop; Maureen E. Hoatlin; Hans Joenje; Weidong Wang

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.


Nature Genetics | 2005

A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M

Amom Ruhikanta Meetei; Annette L. Medhurst; Chen Ling; Yutong Xue; Thiyam Ramsing Singh; Patrick Bier; Jurgen Steltenpool; Stacie Stone; Inderjeet Dokal; Christopher G. Mathew; Maureen E. Hoatlin; Hans Joenje; Johan P. de Winter; Weidong Wang

Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Nine genes involved in Fanconi anemia have been identified; their products participate in a DNA damage–response network involving BRCA1 and BRCA2 (refs. 2,3). We previously purified a Fanconi anemia core complex containing the FANCL ubiquitin ligase and six other Fanconi anemia–associated proteins. Each protein in this complex is essential for monoubiquitination of FANCD2, a key reaction in the Fanconi anemia DNA damage–response pathway. Here we show that another component of this complex, FAAP250, is mutant in individuals with Fanconi anemia of a new complementation group (FA-M). FAAP250 or FANCM has sequence similarity to known DNA-repair proteins, including archaeal Hef, yeast MPH1 and human ERCC4 or XPF. FANCM can dissociate DNA triplex, possibly owing to its ability to translocate on duplex DNA. FANCM is essential for monoubiquitination of FANCD2 and becomes hyperphosphorylated in response to DNA damage. Our data suggest an evolutionary link between Fanconi anemia–associated proteins and DNA repair; FANCM may act as an engine that translocates the Fanconi anemia core complex along DNA.


Nature Genetics | 2005

The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J.

Marieke Levitus; Quinten Waisfisz; Barbara C. Godthelp; Yne de Vries; Shobbir Hussain; Wouter W. Wiegant; Elhaam Elghalbzouri-Maghrani; Jurgen Steltenpool; Martin A. Rooimans; Gerard Pals; Fré Arwert; Christopher G. Mathew; Małgorzata Z. Zdzienicka; Kevin Hiom; Johan P. de Winter; Hans Joenje

The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.


Nature Genetics | 2007

Fanconi anemia is associated with a defect in the BRCA2 partner PALB2

Bing Xia; Josephine C. Dorsman; Najim Ameziane; Yne de Vries; Martin A. Rooimans; Qing Sheng; Gerard Pals; Abdellatif Errami; Eliane Gluckman; Julián Llera; Weidong Wang; David M. Livingston; Hans Joenje; Johan P. de Winter

The Fanconi anemia and BRCA networks are considered interconnected, as BRCA2 gene defects have been discovered in individuals with Fanconi anemia subtype D1. Here we show that a defect in the BRCA2-interacting protein PALB2 is associated with Fanconi anemia in an individual with a new subtype. PALB2-deficient cells showed hypersensitivity to cross-linking agents and lacked chromatin-bound BRCA2; these defects were corrected upon ectopic expression of PALB2 or by spontaneous reversion.


Nature Genetics | 2000

The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM.

Johan P. de Winter; Martin A. Rooimans; Laura van der Weel; Carola G.M. van Berkel; Noa Alon; Lucine Bosnoyan-Collins; Jan de Groot; Yu Zhi; Quinten Waisfisz; Jan C. Pronk; Fré Arwert; Christopher G. Mathew; Rik J. Scheper; Maureen E. Hoatlin; Manuel Buchwald; Hans Joenje

Fanconi anaemia (FA) is a chromosomal instability syndrome with autosomal recessive inheritance. We have identified the gene mutated in Fanconi anaemia group F patients by complementation cloning. FANCF has no introns and encodes a polypeptide with homology to the prokaryotic RNA binding protein ROM.


Nature Genetics | 2011

SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype

Chantal Stoepker; Karolina Hain; Beatrice Schuster; Yvonne Hilhorst-Hofstee; Martin A. Rooimans; Jurgen Steltenpool; Anneke B. Oostra; Katharina Eirich; Elisabeth T. Korthof; Aggie Nieuwint; Nicolaas G. J. Jaspers; Thomas Bettecken; Hans Joenje; Detlev Schindler; John Rouse; Johan P. de Winter

DNA interstrand crosslink repair requires several classes of proteins, including structure-specific endonucleases and Fanconi anemia proteins. SLX4, which coordinates three separate endonucleases, was recently recognized as an important regulator of DNA repair. Here we report the first human individuals found to have biallelic mutations in SLX4. These individuals, who were previously diagnosed as having Fanconi anemia, add SLX4 as an essential component to the FA-BRCA genome maintenance pathway.


American Journal of Human Genetics | 2000

Isolation of a cDNA Representing the Fanconi Anemia Complementation Group E Gene

Johan P. de Winter; Carola G.M. van Berkel; Martin A. Rooimans; Laura van der Weel; Jurgen Steltenpool; Ilja Demuth; Neil V. Morgan; Noa Alon; Lucine Bosnoyan-Collins; Jeff Lightfoot; P.A.J. Leegwater; Quinten Waisfisz; Kenshi Komatsu; Fré Arwert; Jan C. Pronk; Christopher G. Mathew; Manuel Buchwald; Hans Joenje

Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome with at least seven different complementation groups. Four FA genes (FANCA, FANCC, FANCF, and FANCG) have been identified, and two other FA genes (FANCD and FANCE) have been mapped. Here we report the identification, by complementation cloning, of the gene mutated in FA complementation group E (FANCE). FANCE has 10 exons and encodes a novel 536-amino acid protein with two potential nuclear localization signals.


American Journal of Human Genetics | 2013

Mutations in ERCC4, Encoding the DNA-Repair Endonuclease XPF, Cause Fanconi Anemia

Massimo Bogliolo; Beatrice Schuster; Chantal Stoepker; Burak Derkunt; Yan Su; Anja Raams; Juan P. Trujillo; Jordi Minguillón; M.J. Ramírez; Roser Pujol; José A. Casado; Rocío Baños; Paula Rio; Kerstin Knies; Sheila Zuñiga; Javier Benitez; Juan A. Bueren; Nicolaas G. J. Jaspers; Orlando D. Schärer; Johan P. de Winter; Detlev Schindler; Jordi Surrallés

Fanconi anemia (FA) is a rare genomic instability disorder characterized by progressive bone marrow failure and predisposition to cancer. FA-associated gene products are involved in the repair of DNA interstrand crosslinks (ICLs). Fifteen FA-associated genes have been identified, but the genetic basis in some individuals still remains unresolved. Here, we used whole-exome and Sanger sequencing on DNA of unclassified FA individuals and discovered biallelic germline mutations in ERCC4 (XPF), a structure-specific nuclease-encoding gene previously connected to xeroderma pigmentosum and segmental XFE progeroid syndrome. Genetic reversion and wild-type ERCC4 cDNA complemented the phenotype of the FA cell lines, providing genetic evidence that mutations in ERCC4 cause this FA subtype. Further biochemical and functional analysis demonstrated that the identified FA-causing ERCC4 mutations strongly disrupt the function of XPF in DNA ICL repair without severely compromising nucleotide excision repair. Our data show that depending on the type of ERCC4 mutation and the resulting balance between both DNA repair activities, individuals present with one of the three clinically distinct disorders, highlighting the multifunctional nature of the XPF endonuclease in genome stability and human disease.


Nature Genetics | 1999

Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism

Quinten Waisfisz; Neil V. Morgan; Maria Savino; Johan P. de Winter; Carola G.M. van Berkel; Maureen E. Hoatlin; Leonarda Ianzano; Rachel A. Gibson; Fré Arwert; Anna Savoia; Christopher G. Mathew; Jan C. Pronk; Hans Joenje

Somatic mosaicism due to reversion of a pathogenic allele to wild type has been described in several autosomal recessive disorders. The best known mechanism involves intragenic mitotic recombination or gene conversion in compound heterozygous patients, whereby one allele serves to restore the wild-type sequence in the other. Here we document for the first time functional correction of a pathogenic microdeletion, microinsertion and missense mutation in homozygous Fanconi anaemia (FA) patients resulting from compensatory secondary sequence alterations in cis. The frameshift mutation 1615delG in FANCA was compensated by two additional single base-pair deletions (1637delA and 1641delT); another FANCA frameshift mutation, 3559insG, was compensated by 3580insCGCTG; and a missense mutation in FANCC (1749T→G, Leu496Arg) was altered by 1748C→T, creating a cysteine codon. Although in all three cases the predicted proteins were different from wild type, their cDNAs complemented the characteristic hypersensitivity of FA cells to crosslinking agents, thus establishing a functional correction to wild type.


Mutation Research | 2009

The genetic and molecular basis of Fanconi anemia

Johan P. de Winter; Hans Joenje

The capacity to maintain genomic integrity is shared by all living organisms. Multiple pathways are distinguished that safeguard genomic stability, most of which have originated in primitive life forms. In human individuals, defects in these pathways are typically associated with cancer proneness. The Fanconi anemia pathway, one of these pathways, has evolved relatively late during evolution and exists - in its fully developed form - only in vertebrates. This pathway, in which thus far 13 distinct proteins have been shown to participate, appears essential for error-free DNA replication. Inactivating mutations in the corresponding genes underlie the recessive disease Fanconi anemia (FA). In the last decade the genetic basis of this disorder has been uncovered by a variety of approaches, including complementation cloning, genetic linkage analysis and protein association studies. Here we review these approaches, introduce the encoded proteins, and discuss their possible role in ensuring genomic integrity.

Collaboration


Dive into the Johan P. de Winter's collaboration.

Top Co-Authors

Avatar

Hans Joenje

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quinten Waisfisz

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Najim Ameziane

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fré Arwert

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Jurgen Steltenpool

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Weidong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge