Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Peränen is active.

Publication


Featured researches published by Johan Peränen.


Cell | 2007

A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis

Maxence V. Nachury; Alexander V. Loktev; Qihong Zhang; Christopher J. Westlake; Johan Peränen; Andreas Merdes; Diane C. Slusarski; Richard H. Scheller; J. Fernando Bazan; Val C. Sheffield; Peter K. Jackson

Primary cilium dysfunction underlies the pathogenesis of Bardet-Biedl syndrome (BBS), a genetic disorder whose symptoms include obesity, retinal degeneration, and nephropathy. However, despite the identification of 12 BBS genes, the molecular basis of BBS remains elusive. Here we identify a complex composed of seven highly conserved BBS proteins. This complex, the BBSome, localizes to nonmembranous centriolar satellites in the cytoplasm but also to the membrane of the cilium. Interestingly, the BBSome is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Strikingly, Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Conversely, preventing Rab8(GTP) production blocks ciliation in cells and yields characteristic BBS phenotypes in zebrafish. Our data reveal that BBS may be caused by defects in vesicular transport to the cilium.


Nature Cell Biology | 2010

A molecular network for de novo generation of the apical surface and lumen

David M. Bryant; Anirban Datta; Alejo E. Rodríguez-Fraticelli; Johan Peränen; Fernando Martín-Belmonte; Keith E. Mostov

To form epithelial organs cells must polarize and generate de novo an apical domain and lumen. Epithelial polarization is regulated by polarity complexes that are hypothesized to direct downstream events, such as polarized membrane traffic, although this interconnection is not well understood. We have found that Rab11a regulates apical traffic and lumen formation through the Rab guanine nucleotide exchange factor (GEF), Rabin8, and its target, Rab8a. Rab8a and Rab11a function through the exocyst to target Par3 to the apical surface, and control apical Cdc42 activation through the Cdc42 GEF, Tuba. These components assemble at a transient apical membrane initiation site to form the lumen. This Rab11a-directed network directs Cdc42-dependent apical exocytosis during lumen formation, revealing an interaction between the machineries of vesicular transport and polarization.


Biochemical Journal | 2005

AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain

Cristinel P. Miinea; Hiroyuki Sano; Susan Kane; Eiko Sano; Mitsunori Fukuda; Johan Peränen; William S. Lane; Gustav E. Lienhard

Recently, we described a 160 kDa protein (designated AS160, for Akt substrate of 160 kDa) with a predicted Rab GAP (GTPase-activating protein) domain that is phosphorylated on multiple sites by the protein kinase Akt. Phosphorylation of AS160 in adipocytes is required for insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The aim of the present study was to determine whether AS160 is in fact a GAP for Rabs, and, if so, what its specificity is. We first identified a group of 16 Rabs in a preparation of intracellular vesicles containing GLUT4 by MS. We then prepared the recombinant GAP domain of AS160 and examined its activity against many of these Rabs, as well as several others. The GAP domain was active against Rabs 2A, 8A, 10 and 14. There was no significant activity against 14 other Rabs. GAP activity was further validated by the finding that the recombinant GAP domain with the predicted catalytic arginine residue replaced by lysine was inactive. Finally, it was found by immunoblotting that Rabs 2A, 8A and 14 are present in GLUT4 vesicles. These results indicate that AS160 is a Rab GAP, and suggest novel Rabs that may participate in GLUT4 translocation.


Nature | 2007

Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo

Päivi Lindholm; Merja H. Voutilainen; Juha Laurén; Johan Peränen; Veli-Matti Leppänen; Jaan-Olle Andressoo; Maria Lindahl; Sanna Janhunen; Nisse Kalkkinen; Tõnis Timmusk; Raimo K. Tuominen; Mart Saarma

In Parkinson’s disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson’s disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson’s disease.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Coordination of Rab8 and Rab11 in primary ciliogenesis

Andreas Knödler; Shanshan Feng; Jian Zhang; Xiaoyu Zhang; Amlan Das; Johan Peränen; Wei Guo

Primary cilia are microtubule-based membrane projections located at the surface of many cells. Defects in primary cilia formation have been implicated in a number of genetic disorders, such as Bardet-Biedl Syndrome and Polycystic Kidney Disease. Recent studies have demonstrated that polarized vesicular transport involving Rab8 and its guanine nucleotide-exchange factor Rabin8 is essential for primary ciliogenesis. Here we report that Rabin8 is a direct downstream effector of Rab11, which functions in membrane trafficking from the trans-Golgi network and recycling endosomes. Rab11, in its GTP-bound form, interacts with Rabin8 and kinetically stimulates the guanine nucleotide-exchange activity of Rabin8 toward Rab8. Rab11 is enriched at the base of the primary cilia and inhibition of Rab11 function by a dominant-negative mutant or RNA interference blocks primary ciliogenesis. Our results suggest that Rab GTPases coordinate with each other in the regulation of vesicular trafficking during primary ciliogenesis.


Current Biology | 2000

FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis

Katarina Hattula; Johan Peränen

Huntingtons disease is characterised by the death of cortical and striatal neurons, and is the result of an expanded polyglutamine tract in the Huntingtin protein [1]. Huntingtin is present on both endocytic and secretory membrane organelles but its function is unclear [2,3]. Rab GTPases regulate both of these transport pathways [4]. We have previously shown that Rab8 controls polarised membrane transport by modulating cell morphogenesis [5]. To understand Rab8-mediated processes, we searched for Rab8-interacting proteins by the yeast two-hybrid system. Here, we report that Huntingtin is linked to the Rab8 protein through FIP-2, a tumour necrosis factor-alpha (TNF-alpha)-inducible coiled-coil protein related to the NEMO protein [6,7]. The activated form of Rab8 interacted with the amino-terminal region of FIP-2, whereas dominant-negative Rab8 did not. Huntingtin bound to the carboxy-terminal region of FIP-2. Coexpressed FIP-2 and Huntingtin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures, and FIP-2 promoted cell polarisation in a similar way to Rab8. We propose a model in which Huntingtin, together with FIP-2 and Rab8, are part of a protein network that regulates membrane trafficking and cellular morphogenesis.


Developmental Cell | 2008

CP110 Suppresses Primary Cilia Formation through Its Interaction with CEP290, a Protein Deficient in Human Ciliary Disease

William Y. Tsang; Carine Bossard; Hemant Khanna; Johan Peränen; Anand Swaroop; Vivek Malhotra; Brian David Dynlacht

Primary cilia are nonmotile organelles implicated in signaling and sensory functions. Understanding how primary cilia assemble could shed light on the many human diseases caused by mutations in ciliary proteins. The centrosomal protein CP110 is known to suppress ciliogenesis through an unknown mechanism. Here, we report that CP110 interacts with CEP290--a protein whose deficiency is implicated in human ciliary disease--in a discrete complex separable from other CP110 complexes involved in regulating the centrosome cycle. Ablation of CEP290 prevents ciliogenesis without affecting centrosome function or cell-cycle progression. Interaction with CEP290 is absolutely required for the ability of CP110 to suppress primary cilia formation. Furthermore, CEP290 and CP110 interact with Rab8a, a small GTPase required for cilia assembly. Depletion of CEP290 interferes with localization of Rab8a to centrosomes and cilia. Our results suggest that CEP290 cooperates with Rab8a to promote ciliogenesis and that this function is antagonized by CP110.


The Journal of Neuroscience | 2009

Mesencephalic Astrocyte-Derived Neurotrophic Factor Is Neurorestorative in Rat Model of Parkinson's Disease

Merja H. Voutilainen; Susanne Bäck; Eeva Pörsti; Liisa Toppinen; Lauri Lindgren; Päivi Lindholm; Johan Peränen; Mart Saarma; Raimo K. Tuominen

Neurotrophic factors are promising candidates for the treatment of Parkinsons disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a novel evolutionarily conserved family of neurotrophic factors. We examined whether MANF has neuroprotective and neurorestorative effect in an experimental model of PD in rats. We also studied the distribution and transportation of intrastriatally injected MANF in the brain and compared it with glial cell line-derived neurotrophic factor (GDNF). Unilateral lesion of nigrostriatal dopaminergic system was induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Amphetamine-induced turning behavior was monitored up to 12 weeks after the unilateral lesion. The local diffusion at the injection site and transportation profiles of intrastriatally injected MANF and GDNF were studied by immunohistochemical detection of the unlabeled growth factors as well as by autoradiographic and gamma counting detection of 125I-labeled trophic factors. Intrastriatally injected MANF protected nigrostriatal dopaminergic nerves from 6-OHDA-induced degeneration as evaluated by counting tyrosine hydroxylase (TH)-positive cell bodies in the substantia nigra (SN) and TH-positive fibers in the striatum. More importantly, MANF also restored the function of the nigrostriatal dopaminergic system when administered either 6 h before or 4 weeks after 6-OHDA administration in the striatum. MANF was distributed throughout the striatum more readily than GDNF. The mechanism of MANF action differs from that of GDNF because intrastriatally injected 125I-MANF was transported to the frontal cortex, whereas 125I-GDNF was transported to the SN. Our results suggest that MANF is readily distributed throughout the striatum and has significant therapeutic potential for the treatment of PD.


Journal of Cell Science | 2006

Characterization of the Rab8-specific membrane traffic route linked to protrusion formation

Katarina Hattula; Johanna Furuhjelm; Jaana Tikkanen; Kimmo Tanhuanpää; Pirjo Laakkonen; Johan Peränen

Rab8 has a drastic effect on cell shape, but the membrane trafficking route it regulates is poorly defined. Here, we show that endogenous and ectopically expressed Rab8 is associated with macropinosomes generated at ruffling membrane domains. These macropinosomes fuse or transform into tubules that move toward the cell center, from where they are recycled back to the leading edge. The biogenesis of these tubules is dependent on actin and microtubular dynamics. Expression of dominant-negative Rab8 mutants or depletion of Rab8 by RNA interference inhibit protrusion formation, but promote cell-cell adhesion and actin stress fiber formation, whereas expression of the constitutively active Rab8-Q67L has the opposite effect. Rab8 localization overlaps with both Rab11 and Arf6, and is functionally linked to Arf6. We also demonstrate that Rab8 activity is needed for the transport of transferrin and the transferrin receptor to the pericentriolar region and to cell protrusions, and that Rab8 controls the traffic of cholera toxin B to the Golgi compartment. Finally, Rab8 colocalizes and binds specifically to a synaptotagmin-like protein (Slp1/JFC1), which is involved in controlling Rab8 membrane dynamics. We propose that Rab8 regulates a membrane-recycling pathway that mediates protrusion formation.


Molecular and Cellular Neuroscience | 2008

MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain.

Päivi Lindholm; Johan Peränen; Jaan-Olle Andressoo; Nisse Kalkkinen; Zaal Kokaia; Olle Lindvall; Tõnis Timmusk; Mart Saarma

The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been described as a survival factor for dopaminergic neurons in vitro, but its expression in mammalian tissues is poorly known. MANF and a homologous protein, the conserved dopamine neurotrophic factor (CDNF), form a novel evolutionary conserved family of neurotrophic factors. Here we used in situ hybridization and immunohistochemistry to characterize MANF expression in developing and adult mouse. MANF expression was widespread in the nervous system and non-neuronal tissues. In the brain, relatively high MANF levels were detected in the cerebral cortex, hippocampus and cerebellar Purkinje cells. After status epilepticus, Manf mRNA expression was transiently increased in the dentate granule cell layer of hippocampus, thalamic reticular nucleus and in several cortical areas. In contrast, following global forebrain ischemia changes in Manf expression were widespread in the hippocampal formation and more restricted in cerebral cortex. The widespread expression of MANF together with its evolutionary conserved nature and regulation by brain insults suggest that it has important functions both under normal and pathological conditions in many tissue types.

Collaboration


Dive into the Johan Peränen's collaboration.

Top Co-Authors

Avatar

Mart Saarma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge