Johan van de Leur
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johan van de Leur.
Communications in Mathematical Physics | 1991
Fons ten Kroode; Johan van de Leur
AbstractWe give an explicit description of all inequivalent Heisenberg subalgebras of the affine Lie algebra
Journal of Nonlinear Mathematical Physics | 2001
Johan van de Leur
International Mathematics Research Notices | 2001
Johan van de Leur
g\hat l_n (\mathbb{C})
Journal of Physics A | 2013
Guido Carlet; Johan van de Leur
Communications in Mathematical Physics | 2003
H. Aratyn; Johan van de Leur
and the associated vertex operator constructions of the level one integrable highest weight representations of this algebra. The construction uses multicomponent fermionic fields and yields a correspondence between bosons (elements of the Heisenberg subalgebra) and fermions.
Advances in Mathematics | 2010
Evgeny Feigin; Johan van de Leur; Sergey Shadrin
Abstract We obtain the collection of symmetric and symplectic matrix integrals and the collection of Pfaffian tau-functions, recently described by Peng and Adler and van Moerbeke, as specific elements in the Spin-group orbit of the vacuum vector of a fermionic Fock space. This fermionic Fock space is the same space as one constructs to obtain the KP and 1-Toda lattice hierarchy.
Transformation Groups | 2012
Dana Bălibanu; Johan van de Leur
We show that all (n-component) KP tau-functions, which are related to the twisted loop group of GLn, give solutions of the Darboux-Egoroff system of PDE’s. Using the Geometry of the Grassmannian we construct from the corresponding wave function the deformed flat coordinates of the Egoroff metric and from this the corresponding solution of the Witten–Dijkgraaf–E. Verlinde–H. Verlinde equations
Letters in Mathematical Physics | 2015
Johan van de Leur; Alexander Yu. Orlov
We prove that the Hirota quadratic equations of Milanov and Tseng define an integrable hierarchy which is equivalent to the extended bigraded Toda hierarchy. In particular this proves a conjecture of Milanov-Tseng that relates the total descendent potential of the orbifold
Journal of Physics A | 2009
Arthemy V. Kiselev; Johan van de Leur
C_{k,m}
Acta Applicandae Mathematicae | 1992
Fons ten Kroode; Johan van de Leur
with a tau function of the bigraded Toda hierarchy.