Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan van Meerloo is active.

Publication


Featured researches published by Johan van Meerloo.


Methods of Molecular Biology | 2011

Cell sensitivity assays: the MTT assay.

Johan van Meerloo; Gertjan J. L. Kaspers; Jacqueline Cloos

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay is based on the conversion of MTT into formazan crystals by living cells, which determines mitochondrial activity. Since for most cell populations the total mitochondrial activity is related to the number of viable cells, this assay is broadly used to measure the in vitro cytotoxic effects of drugs on cell lines or primary patient cells. In this chapter the protocol of the assay is described including important considerations relevant for each step of the assay as well as its limitations and possible applications.


International Journal of Cancer | 2011

Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways

Serge J. Smeets; Marlon van der Plas; Tieneke B.M. Schaaij-Visser; Eva A.M. van Veen; Johan van Meerloo; Boudewijn J. M. Braakhuis; Renske D.M. Steenbergen; Ruud H. Brakenhoff

A subgroup of head and neck squamous cell carcinomas (HNSCCs) contains high‐risk human papillomavirus‐type 16 (HPV16). The viral E6 and E7 oncoproteins inactivate the p53 and pRb proteins, respectively. We examined the causative effect of HPV16 E6 and E7 expression on the immortalization of normal oral keratinocytes (OKCs) and compared the resulting phenotype with alternative ways of p53‐ and pRb‐pathway abrogation frequently found in HNSCCs without HPV. Primary OKCs were conditionally immortalized with temperature‐sensitive SV40 large T‐antigen and human telomerase, allowing these cells to return to their senescent primary state after temperature shift. HPV16 E6 and E7 were introduced to overcome senescence, determined with population doubling (PD) as read‐out. For comparison, we downregulated p53 and p16 by short hairpin RNA genes and expressed mutant p53R(175)H and cyclinD1. Expression of HPV16 E6 caused an extended life span similar to expression of mutant p53R(175)H or p53 knockdown. Expression of mutant p53R(175)H seemed to cause additional activation of the hypoxia and WNT signaling pathways. HPV16 E7 expression had no direct effect on lifespan, similar to p16 knockdown or cyclinD1 expression. In combination with HPV16 E6 or other functional inactivations of p53, abrogation of the pRb‐pathway by either HPV16 E7 or other manipulations caused an immortal phenotype. Our data show the causative role of HPV16 E6/E7 in early squamous carcinogenesis. Activity of each gene could be mimicked by other genetic events frequently found in HNSCC without HPV. This data provides the experimental proof of causal association of HPV in HNSCC carcinogenesis and further support the crucial role of the p53‐ and pRb‐pathways.


Biochemical Pharmacology | 2012

Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer

Leonie H. A. M. De Wilt; Gerrit Jansen; Yehuda G. Assaraf; Johan van Meerloo; Jacqueline Cloos; Aaron D. Schimmer; Elena T. Chan; Christopher J. Kirk; Godefridus J. Peters; Frank A.E. Kruyt

The proteasome inhibitor bortezomib, registered for Multiple Myeloma treatment, is currently explored for activity in solid tumors including non-small cell lung cancer (NSCLC). Here we studied the proteasome-based mechanisms underlying intrinsic and acquired bortezomib resistance in NSCLC cells. Various NSCLC cell lines displayed differential intrinsic sensitivities to bortezomib. High basal chymotrypsin- and caspase-like proteasome activities correlated with bortezomib resistance in these cells. Next, via stepwise selection, acquired bortezomib resistant cells were obtained with 8-70-fold increased resistance. Cross-resistance was found to proteasome inhibitors specifically targeting β-subunits, but not to the novel α-subunit-specific proteasome inhibitor (5AHQ). Consistently, bortezomib-resistant cells required higher bortezomib concentrations to induce G2/M arrest and apoptosis. Interestingly, bortezomib concentration-dependent caspase cleavage, Mcl-1 and NOXA accumulation remained intact in resistant H460 and SW1573 cells, while A549 resistant cells displayed different expression profiles suggesting additional and more protein specific adaptations. Furthermore, bortezomib-resistant cells exhibited increased levels of both constitutive and immuno-β-subunits. Sequence analysis of the bortezomib-binding pocket in the β5-subunit revealed Ala49Thr, Met45Val and Cys52Phe substitutions that were not previously described in solid tumors. Bortezomib-resistant cells displayed reduced catalytic proteasome activities and required higher bortezomib concentrations to achieve comparable inhibition of proteasome activity. Taken together, these findings establish that high basal levels of proteasome activity correlate with intrinsic bortezomib resistance. Furthermore, acquired bortezomib resistance in NSCLC is associated with proteasome subunit overexpression and emergence of mutant β5-subunits that likely compromise bortezomib binding. α-Subunit-specific proteasome inhibitors, however, can efficiently bypass this resistance modality.


Journal of Hematology & Oncology | 2014

Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines

Denise Niewerth; Gertjan J. L. Kaspers; Yehuda G. Assaraf; Johan van Meerloo; Christopher J. Kirk; Janet L. Anderl; Jonathan L. Blank; Peter M. van de Ven; Sonja Zweegman; Gerrit Jansen; Jacqueline Cloos

BackgroundDespite encouraging results with the proteasome inhibitor bortezomib in the treatment of hematologic malignancies, emergence of resistance can limit its efficacy, hence calling for novel strategies to overcome bortezomib-resistance. We previously showed that bortezomib-resistant human leukemia cell lines expressed significantly lower levels of immunoproteasome at the expense of constitutive proteasomes, which harbored point mutations in exon 2 of the PSMB5 gene encoding the β5 subunit. Here we investigated whether up-regulation of immunoproteasomes by exposure to interferon-γ restores sensitivity to bortezomib in myeloma and leukemia cell lines with acquired resistance to bortezomib.MethodsRPMI-8226 myeloma, THP1 monocytic/macrophage and CCRF-CEM (T) parental cells and sub lines with acquired resistance to bortezomib were exposed to Interferon-γ for 24-48 h where after the effects on proteasome subunit expression and activity were measured, next to sensitivity measurements to proteasome inhibitors bortezomib, carfilzomib, and the immunoproteasome selective inhibitor ONX 0914. At last, siRNA knockdown experiments of β5i and β1i were performed to identify the contribution of these subunits to sensitivity to proteasome inhibition. Statistical significance of the differences were determined using the Mann-Whitney U test.ResultsInterferon-γ exposure markedly increased immunoproteasome subunit mRNA to a significantly higher level in bortezomib-resistant cells (up to 30-fold, 10-fold, and 6-fold, in β1i, β5i, and β2i, respectively) than in parental cells. These increases were paralleled by elevated immunoproteasome protein levels and catalytic activity, as well as HLA class-I. Moreover, interferon-γ exposure reinforced sensitization of bortezomib-resistant tumor cells to bortezomib and carfilzomib, but most prominently to ONX 0914, as confirmed by cell growth inhibition studies, proteasome inhibitor-induced apoptosis, activation of PARP cleavage and accumulation of polyubiquitinated proteins. This sensitization was abrogated by siRNA silencing of β5i but not by β1i silencing, prior to pulse exposure to interferon-γ.ConclusionDownregulation of β5i subunit expression is a major determinant in acquisition of bortezomib-resistance and enhancement of its proteasomal assembly after induction by interferon-γ facilitates restoration of sensitivity in bortezomib-resistant leukemia cells towards bortezomib and next generation (immuno) proteasome inhibitors.


Haematologica | 2013

Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors

Denise Niewerth; Niels E. Franke; Gerrit Jansen; Yehuda G. Assaraf; Johan van Meerloo; Christopher J. Kirk; Jeremiah Degenhardt; Janet L. Anderl; Aaron D. Schimmer; Sonja Zweegman; Valerie de Haas; Terzah M. Horton; Gertjan J. L. Kaspers; Jacqueline Cloos

The ex vivo sensitivity of pediatric leukemia cells to the proteasome inhibitor bortezomib was compared to 3 next generation proteasome inhibitors: the epoxyketone-based irreversible proteasome inhibitors carfilzomib, its orally bio-available analog ONX 0912, and the immunoproteasome inhibitor ONX 0914. LC50 values were determined by MTT cytotoxicity assays for 29 childhood acute lymphoblastic leukemia and 12 acute myeloid leukemia patient samples and correlated with protein expression levels of the constitutive proteasome subunits (β5, β1, β2) and their immunoproteasome counterparts (β5i, β1i, β2i). Acute lymphoblastic leukemia cells were up to 5.5-fold more sensitive to proteasome inhibitors than acute myeloid leukemia cells (P<0.001) and the combination of bortezomib and dexamethasone proved additive/synergistic in the majority of patient specimens. Although total proteasome levels in acute lymphoblastic leukemia and acute myeloid leukemia cells did not differ significantly, the ratio of immuno/constitutive proteasome was markedly higher in acute lymphoblastic leukemia cells over acute myeloid leukemia cells. In both acute lymphoblastic leukemia and acute myeloid leukemia, increased ratios of β5i/β5, β1i/β1 and β2i/β2 correlated with increased sensitivity to proteasome inhibitors. Together, differential expression levels of constitutive and immunoproteasomes in pediatric acute lymphoblastic leukemia and acute myeloid leukemia constitute an underlying mechanism of sensitivity to bortezomib and new generation proteasome inhibitors, which may further benefit from synergistic combination therapy with drugs including glucocorticoids.


Molecular Pharmacology | 2014

Antileukemic Activity and Mechanism of Drug Resistance to the Marine Salinispora tropica Proteasome Inhibitor Salinosporamide A (Marizomib)

Denise Niewerth; Gerrit Jansen; Lesley F. V. Riethoff; Johan van Meerloo; Andrew J. Kale; Bradley S. Moore; Yehuda G. Assaraf; Janet L. Anderl; Sonja Zweegman; Gertjan J. L. Kaspers; Jacqueline Cloos

Salinosporamide A (NPI-0052, marizomib) is a naturally occurring proteasome inhibitor derived from the marine actinobacterium Salinispora tropica, and represents a promising clinical agent in the treatment of hematologic malignancies. Recently, these actinobacteria were shown to harbor self-resistance properties to salinosporamide A by expressing redundant catalytically active mutants of the 20S proteasome β-subunit, reminiscent of PSMB5 mutations identified in cancer cells with acquired resistance to the founding proteasome inhibitor bortezomib (BTZ). Here, we assessed the growth inhibitory potential of salinosporamide A in human acute lymphocytic leukemia CCRF-CEM cells, and its 10-fold (CEM/BTZ7) and 123-fold (CEM/BTZ200) bortezomib-resistant sublines harboring PSMB5 mutations. Parental cells displayed sensitivity to salinosporamide A (IC50 = 5.1 nM), whereas their bortezomib-resistant sublines were 9- and 17-fold cross-resistant to salinosporamide A, respectively. Notably, combination experiments of salinosporamide A and bortezomib showed synergistic activity in CEM/BTZ200 cells. CEM cells gradually exposed to 20 nM salinosporamide A (CEM/S20) displayed stable 5-fold acquired resistance to salinosporamide A and were 3-fold cross-resistant to bortezomib. Consistent with the acquisition of a PSMB5 point mutation (M45V) in CEM/S20 cells, salinosporamide A displayed a markedly impaired capacity to inhibit β5-associated catalytic activity. Last, compared with parental CEM cells, CEM/S20 cells exhibited up to 2.5-fold upregulation of constitutive proteasome subunits, while retaining unaltered immunoproteasome subunit expression. In conclusion, salinosporamide A displayed potent antileukemic activity against bortezomib-resistant leukemia cells. β-Subunit point mutations as a common feature of acquired resistance to salinosporamide A and bortezomib in hematologic cells and S. tropica suggest an evolutionarily conserved mechanism of resistance to proteasome inhibitors.


Biochemical Pharmacology | 2014

Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924

Denise Niewerth; Johan van Meerloo; Gerrit Jansen; Yehuda G. Assaraf; Tessa C. Hendrickx; Christopher J. Kirk; Janet L. Anderl; Sonja Zweegman; Gertjan J. L. Kaspers; Jacqueline Cloos

PR-924 is a novel prototypic immunoproteasome inhibitor bearing markedly enhanced specificity for the β5i immunoproteasome subunit, compared to the classical proteasome inhibitor bortezomib. Here, we assessed the growth inhibitory potential of PR-924 in three human hematologic malignancy cell lines (CCRF-CEM, THP1, and 8226) and their bortezomib-resistant sublines. Parental cells displayed equal sensitivity to PR-924 (IC₅₀: 1.5-2.8 μM), whereas their bortezomib-resistant tumor lines displayed a 10-12 fold cross-resistance to PR-924. However, PR-924 cross-resistance factors for bortezomib-resistant sublines were markedly lower compared to the resistance factors to bortezomib. Proteasome inhibition experiments confirmed that PR-924 specifically inhibited β5i activity, even far below concentrations that exerted anti-proliferative activity. We further determined whether PR-924 activity might be compromised by acquisition of drug resistance phenomena. Indeed, CEM cells rendered stepwise resistant to 20 μM PR-924 (CEM/PR20) displayed 13-fold PR-924-resistance and 10-fold cross-resistance to bortezomib. CEM/PR20 cells were devoid of mutations in the PSMB8 gene (encoding β5i), but acquired Met45Ile mutation in the PSMB5 gene (encoding constitutive β5), consistent with β5 mutations observed in bortezomib-resistant cells. Furthermore, compared to parental CEM cells, CEM/PR20 cells exhibited 2.5-fold upregulation of constitutive proteasome subunit expression, whereas immunoproteasome subunit expression was 2-fold decreased. In conclusion, PR-924 displayed potent anti-leukemic activity including toward bortezomib-resistant leukemia cells. Despite the specificity of PR-924 to the β5i immunoproteasome subunit, its anti-leukemic effect required concentrations that blocked both β5 and β5i subunits. This is underscored by the emergence of mutations in PSMB5 rather than in PSMB8.


Clinical Cancer Research | 2017

Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab

Jakub Krejcik; Kris A. Frerichs; Inger S. Nijhof; Berris van Kessel; Jeroen F. van Velzen; Andries C. Bloem; Marloes E.C. Broekmans; Sonja Zweegman; Johan van Meerloo; René J. P. Musters; Pino J. Poddighe; Richard W.J. Groen; Christopher Chiu; Torben Plesner; Henk M. Lokhorst; A. Kate Sasser; Tuna Mutis; Niels W.C.J. van de Donk

Purpose: Daratumumab treatment results in a marked reduction of CD38 expression on multiple myeloma cells. The aim of this study was to investigate the clinical implications and the underlying mechanisms of daratumumab-mediated CD38 reduction. Experimental Design: We evaluated the effect of daratumumab alone or in combination with lenalidomide-dexamethasone, on CD38 levels of multiple myeloma cells and nontumor immune cells in the GEN501 study (daratumumab monotherapy) and the GEN503 study (daratumumab combined with lenalidomide-dexamethasone). In vitro assays were also performed. Results: In both trials, daratumumab reduced CD38 expression on multiple myeloma cells within hours after starting the first infusion, regardless of depth and duration of the response. In addition, CD38 expression on nontumor immune cells, including natural killer cells, T cells, B cells, and monocytes, was also reduced irrespective of alterations in their absolute numbers during therapy. In-depth analyses revealed that CD38 levels of multiple myeloma cells were only reduced in the presence of complement or effector cells, suggesting that the rapid elimination of CD38high multiple myeloma cells can contribute to CD38 reduction. In addition, we discovered that daratumumab–CD38 complexes and accompanying cell membrane were actively transferred from multiple myeloma cells to monocytes and granulocytes. This process of trogocytosis was also associated with reduced surface levels of some other membrane proteins, including CD49d, CD56, and CD138. Conclusions: Daratumumab rapidly reduced CD38 expression levels, at least in part, through trogocytosis. Importantly, all these effects also occurred in patients with deep and durable responses, thus excluding CD38 reduction alone as a mechanism of daratumumab resistance. The trials were registered at www.clinicaltrials.gov as NCT00574288 (GEN501) and NCT1615029 (GEN503). Clin Cancer Res; 23(24); 7498–511. ©2017 AACR.


Experimental hematology & oncology | 2013

Overcoming bortezomib resistance in human B cells by anti-CD20/rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors

Sue Ellen Verbrugge; Marjon Al; Yehuda G. Assaraf; Denise Niewerth; Johan van Meerloo; Jacqueline Cloos; Michael S van der Veer; George L. Scheffer; Godefridus J. Peters; Elena T. Chan; Janet L. Anderl; Christopher J. Kirk; Sonja Zweegman; Ben A. C. Dijkmans; Willem F. Lems; Rik J. Scheper; Tanja D. de Gruijl; Gerrit Jansen

BackgroundIn clinical and experimental settings, antibody-based anti-CD20/rituximab and small molecule proteasome inhibitor (PI) bortezomib (BTZ) treatment proved effective modalities for B cell depletion in lymphoproliferative disorders as well as autoimmune diseases. However, the chronic nature of these diseases requires either prolonged or re-treatment, often with acquired resistance as a consequence.MethodsHere we studied the molecular basis of acquired resistance to BTZ in JY human B lymphoblastic cells following prolonged exposure to this drug and examined possibilities to overcome resistance by next generation PIs and anti-CD20/rituximab-mediated complement-dependent cytotoxicity (CDC).ResultsCharacterization of BTZ-resistant JY/BTZ cells compared to parental JY/WT cells revealed the following features: (a) 10–12 fold resistance to BTZ associated with the acquisition of a mutation in the PSMB5 gene (encoding the constitutive β5 proteasome subunit) introducing an amino acid substitution (Met45Ile) in the BTZ-binding pocket, (b) a significant 2–4 fold increase in the mRNA and protein levels of the constitutive β5 proteasome subunit along with unaltered immunoproteasome expression, (c) full sensitivity to the irreversible epoxyketone-based PIs carfilzomib and (to a lesser extent) the immunoproteasome inhibitor ONX 0914. Finally, in association with impaired ubiquitination and attenuated breakdown of CD20, JY/BTZ cells harbored a net 3-fold increase in CD20 cell surface expression, which was functionally implicated in conferring a significantly increased anti-CD20/rituximab-mediated CDC.ConclusionsThese results demonstrate that acquired resistance to BTZ in B cells can be overcome by next generation PIs and by anti-CD20/rituximab-induced CDC, thereby paving the way for salvage therapy in BTZ-resistant disease.


Oncotarget | 2016

Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors

Niels E. Franke; G.J.L. Kaspers; Yehuda G. Assaraf; Johan van Meerloo; Denise Niewerth; Floortje L. Kessler; Pino J. Poddighe; Jeroen Kole; Serge J. Smeets; Bauke Ylstra; Chonglei Bi; Wee Joo Chng; Terzah M. Horton; Rene X. Menezes; Renée J.P. Musters; Sonja Zweegman; Gerrit Jansen; Jacqueline Cloos

PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.

Collaboration


Dive into the Johan van Meerloo's collaboration.

Top Co-Authors

Avatar

Jacqueline Cloos

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerrit Jansen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Zweegman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yehuda G. Assaraf

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Denise Niewerth

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Niels E. Franke

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron D. Schimmer

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge