Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Verjans is active.

Publication


Featured researches published by Johan Verjans.


Nature Reviews Cardiology | 2010

Myocardial remodeling after infarction: the role of myofibroblasts

Susanne W.M. van den Borne; Javier Díez; W. Matthijs Blankesteijn; Johan Verjans; Leo Hofstra; Jagat Narula

Myofibroblasts have characteristics of fibroblasts and smooth muscle cells: they produce extracellular matrix and are able to contract. In so doing, they can contribute to tissue replacement and interstitial fibrosis following cardiac injury. The scar formed after myocardial injury is no longer considered to be passive tissue; it is an active playground where myofibroblasts play a role in collagen turnover and scar contraction. Maintaining the extracellular matrix in the scar is essential and can prevent dilatation of the infarct area leading to heart failure. On the other hand, extracellular matrix deposition at sites remote from the infarct area can lead to cardiac stiffness, an inevitable process of myocardial remodeling that occurs in the aftermath of myocardial infarction and constitutes the basis of the development of heart failure. Defining molecular targets on myofibroblasts in conjunction with establishing the feasibility of molecular imaging of these cells might facilitate the early detection and treatment of patients who are at risk of developing heart failure after myocardial infarction.


Circulation | 2003

Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque.

Frank D. Kolodgie; Artiom Petrov; Renu Virmani; Navneet Narula; Johan Verjans; Deena K. Weber; Dagmar Hartung; Neil Steinmetz; Jean Luc Vanderheyden; Mani A. Vannan; Herman K. Gold; Chris Reutelingsperger; Leo Hofstra; Jagat Narula

Background—Apoptosis is common in advanced human atheroma and contributes to plaque instability. Because annexin V has a high affinity for exposed phosphatidylserine on apoptotic cells, radiolabeled annexin V may be used for noninvasive detection of apoptosis in atherosclerotic lesions. Methods and Results—Atherosclerotic plaques were produced in 5 rabbits by deendothelialization of the infradiaphragmatic aorta followed by 12 weeks of cholesterol diet; 5 controls were studied without manipulation. Animals were injected with human recombinant annexin V labeled with technetium-99m before imaging. Aortas were explanted for ex vivo imaging, macroautoradiography, and histological characterization of plaque. Radiolabeled annexin V cleared rapidly from the circulation (T1/2, &agr; 9 and &bgr; 46 minutes). There was intense uptake of radiolabel within lesions by 2 hours; no uptake was seen in controls. The results were confirmed in the ex vivo imaging of the explanted aorta. Quantitative annexin uptake was 9.3-fold higher in lesion versus nonlesion areas; the lesion-to-blood ratio was 3.0±0.37. Annexin uptake paralleled lesion severity and macrophage burden; no correlation was observed with smooth muscle cells. DNA fragmentation staining of apoptotic nuclei was increased in advanced lesions with evolving necrotic cores, predominantly in macrophages; the uptake of radiolabel correlated with the apoptotic index. Conclusions—Because annexin V clears rapidly from blood and targets apoptotic macrophage population, it should constitute an attractive imaging agent for the noninvasive detection of unstable atherosclerotic plaques.


Journal of the American College of Cardiology | 2008

Molecular Imaging of Interstitial Alterations in Remodeling Myocardium After Myocardial Infarction

Susanne W.M. van den Borne; Satoshi Isobe; Johan Verjans; Artiom Petrov; Dagfinn Løvhaug; Peng Li; H. Reinier Zandbergen; Youping Ni; Peter M. Frederik; Jun Zhou; Bente E. Arbo; Astri Rogstad; Alan Cuthbertson; Salah Chettibi; Chris Reutelingsperger; W. Matthijs Blankesteijn; Jos F.M. Smits; Mat J.A.P. Daemen; Faiez Zannad; Mani A. Vannan; Navneet Narula; Bertram Pitt; Leonard Hofstra; Jagat Narula

OBJECTIVES The purpose of this study was to evaluate interstitial alterations in myocardial remodeling using a radiolabeled Cy5.5-RGD imaging peptide (CRIP) that targets myofibroblasts. BACKGROUND Collagen deposition and interstitial fibrosis contribute to cardiac remodeling and heart failure after myocardial infarction (MI). Evaluation of myofibroblastic proliferation should provide indirect evidence of the extent of fibrosis. METHODS Of 46 Swiss-Webster mice, MI was induced in 41 by coronary artery occlusion, and 5 were unmanipulated. Of the 41 mice, 6, 6, and 5 received intravenous technetium-99m labeled CRIP for micro-single-photon emission computed tomography imaging 2, 4, and 12 weeks after MI, respectively; 8 received captopril or captopril with losartan up to 4 weeks after MI. Scrambled CRIP was used 4 weeks after MI in 6 mice; the remaining 10 of 46 mice received unradiolabeled CRIP for histologic characterization. RESULTS Maximum CRIP uptake was observed in the infarct area; quantitative uptake (percent injected dose/g) was highest at 2 weeks (2.75 +/- 0.46%), followed by 4 (2.26 +/- 0.09%) and 12 (1.74 +/- 0.24%) weeks compared with that in unmanipulated mice (0.59 +/- 0.19%). Uptake was higher at 12 weeks in the remote areas. CRIP uptake was histologically traced to myofibroblasts. Captopril alone (1.78 +/- 0.31%) and with losartan (1.13 +/- 0.28%) significantly reduced tracer uptake; scrambled CRIP uptake in infarct area (0.74 +/- 0.17%) was similar to CRIP uptake in normal myocardium. CONCLUSIONS Radiolabeled CRIP allows for noninvasive visualization of interstitial alterations during cardiac remodeling, and is responsive to antiangiotensin treatment. If proven clinically feasible, such a strategy would help identify post-MI patients likely to develop heart failure.


Jacc-cardiovascular Imaging | 2008

Noninvasive imaging of angiotensin receptors after myocardial infarction.

Johan Verjans; Dagfinn Løvhaug; Navneet Narula; Artiom Petrov; Bård Indrevoll; Emma Bjurgert; Tatiana B. Krasieva; Lizette B. Petersen; Grete Mørk Kindberg; Magne Solbakken; Alan Cuthbertson; Mani A. Vannan; Chris Reutelingsperger; Bruce J. Tromberg; Leonard Hofstra; Jagat Narula

OBJECTIVES The purpose of this study was to evaluate the feasibility of noninvasive imaging of angiotensin II (AT) receptor upregulation in a mouse model of post-myocardial infarction (MI) heart failure (HF). BACKGROUND Circulating AT levels do not reflect the status of upregulation of renin-angiotensin axis in the myocardium, which plays a central role in ventricular remodeling and evolution of HF after MI. Appropriately labeled AT or AT receptor blocking agents should be able to specifically target AT receptors by molecular imaging techniques. METHODS AT receptor imaging was performed in 29 mice at various time points after permanent coronary artery ligation or in controls using a fluoresceinated angiotensin peptide analog (APA) and radiolabeled losartan. The APA was used in 19 animals for intravital fluorescence microscopy on a beating mouse heart. Tc-99m losartan was used for in vivo radionuclide imaging and quantitative assessment of AT receptor expression in 10 mice. After imaging, hearts were harvested for pathological characterization using confocal and 2-photon microscopy. RESULTS No or little APA uptake was observed in control animals or within infarct regions on days 0 and 1. Distinct uptake occurred in the infarct area at 1 to 12 weeks after MI; the uptake was at maximum at 3 weeks and reduced markedly at 12 weeks after MI. Ultrasonographic examination demonstrated left ventricular remodeling, and pathologic characterization revealed localization of the APA tracer with collagen-producing myofibroblasts. Tc-99m losartan uptake in the infarct region (0.524 +/- 0.212% injected dose/g) increased 2.4-fold as compared to uptake in the control animals (0.215 +/- 0.129%; p < 0.05). CONCLUSIONS The present study demonstrates the feasibility of in vivo molecular imaging of AT receptors in the remodeling myocardium. Noninvasive imaging studies aimed at AT receptor expression could play a role in identification of subjects likely to develop heart failure. In addition, such a strategy could allow for optimization of anti-angiotensin therapy in patients after MI.


The Journal of Nuclear Medicine | 2010

Annexin A5 Uptake in Ischemic Myocardium: Demonstration of Reversible Phosphatidylserine Externalization and Feasibility of Radionuclide Imaging

Heidi Kenis; Harmen Reinier Zandbergen; Leonard Hofstra; Artiom Petrov; Ewald A. W. J. Dumont; Francis D. Blankenberg; Nezam Haider; Nicole Bitsch; Marion Gijbels; Johan Verjans; Navneet Narula; Jagat Narula; Chris Reutelingsperger

Ischemic insult to the myocardium is associated with cardiomyocyte apoptosis. Because apoptotic cell death is characterized by phosphatidylserine externalization on cell membrane and annexin-A5 (AA5) avidly binds to phosphatidylserine, we hypothesized that radiolabeled AA5 should be able to identify the regions of myocardial ischemia. Methods: Models of brief myocardial ischemia by the occlusion of the coronary artery for 10 min (I-10) and reperfusion for 180 min (R-180) for the detection of phosphatidylserine exteriorization using 99mTc-labeled AA5 and γ-imaging were produced in rabbits. 99mTc-AA5 uptake after brief ischemia was compared with an I-40/R-180 infarct model. Histologic characterization of both myocardial necrosis and apoptosis was performed in ischemia and infarct models. Phosphatidylserine exteriorization was also studied in a mouse model, and the dynamics and kinetics of phosphatidylserine exposure were assessed using unlabeled recombinant AA5 and AA5 labeled with biotin, Oregon Green, or Alexa 568. Appropriate controls were established. Results: Phosphatidylserine exposure after ischemia in the rabbit heart could be detected by radionuclide imaging with 99mTc-AA5. Pathologic characterization of the explanted rabbit hearts did not show apoptosis or necrosis. Homogenization and ultracentrifugation of the ischemic myocardial tissue from rabbit hearts recovered two thirds of the radiolabeled AA5 from the cytoplasmic compartment. Murine experiments demonstrated that the cardiomyocytes expressed phosphatidylserine on their cell surface after an ischemic insult of 5 min. Phosphatidylserine exposure occurred continuously for at least 6 h after solitary ischemic insult. AA5 targeted the exposed phosphatidylserine on cardiomyocytes; AA5 was internalized into cytoplasmic vesicles within 10–30 min. Twenty-four hours after ischemia, cardiomyocytes with internalized AA5 had restored phosphatidylserine asymmetry of the sarcolemma, and no detectable phosphatidylserine remained on the cell surface. The preadministration of a pan-caspase inhibitor, zVAD-fmk, prevented phosphatidylserine exposure after ischemia. Conclusions: After a single episode of ischemia, cardiomyocytes express phosphatidylserine, which is amenable to targeting by AA5, for at least 6 h. Phosphatidylserine exposure is transient and internalized in cytoplasmic vesicles after AA5 binding, indicating the reversibility of the apoptotic process.


Journal of Cardiovascular Pharmacology and Therapeutics | 2009

Macrophage Depletion in Hypertensive Rats Accelerates Development of Cardiomyopathy

Harmen Reinier Zandbergen; Umesh Sharma; Sudhir Gupta; Johan Verjans; Susanne W.M. van den Borne; Saraswati Pokharel; Thomas J. van Brakel; Adriaan M. Duijvestijn; Nico van Rooijen; Jos G. Maessen; Chris Reutelingsperger; Yigal M. Pinto; Jagat Narula; Leo Hofstra

Inflammation contributes to the process of ventricular remodeling after acute myocardial injury. To investigate the role of macrophages in the chronic process of cardiac remodeling, they were selectively depleted by intravenous administration of liposomal clodronate in heart failure—prone hypertensive Ren-2 rats from the age of 7 until 13 weeks. Plain liposomes were used for comparison. Liposomal clodronate treatment reduced the number of blood monocytes and decreased the number of macrophages in the myocardium. Compared to plain liposomes, liposomal clodronate treatment rapidly worsened left ventricular ejection function in hypertensive rats. Liposomal clodronate— treated Ren-2 rat hearts showed areas of myocyte loss with abundant inflammatory cell infiltration, predominantly comprising CD4 positive T lymphocytes. The current study showed that lack of macrophages was associated with earlier development of myocardial dysfunction in hypertensive rats. Modulation of macrophage function may be of value in the evolution of cardiomyopathy.


Jacc-cardiovascular Imaging | 2011

Adenine nucleotide translocase 1 deficiency results in dilated cardiomyopathy with defects in myocardial mechanics, histopathological alterations, and activation of apoptosis.

Nupoor Narula; Michael V. Zaragoza; Partho P. Sengupta; Peng Li; Nezam Haider; Johan Verjans; Katrina G. Waymire; Mani A. Vannan; Douglas C. Wallace

OBJECTIVES the aim of this study was to test the hypothesis that chronic mitochondrial energy deficiency causes dilated cardiomyopathy, we characterized the hearts of age-matched young and old adenine nucleotide translocator (ANT)1 mutant and control mice. BACKGROUND ANTs export mitochondrial adenosine triphosphate into the cytosol and have a role in the regulation of the intrinsic apoptosis pathway. Mitochondrial energy deficiency has been hypothesized, on the basis of indirect evidence, to be a factor in the pathophysiology of dilated cardiomyopathies. Ant1 inactivation should limit adenosine triphosphate for contraction and calcium transport, thereby resulting in early cardiac dysfunction with later dilation and heart failure. METHODS we conducted a multiyear study of 73 mutant (Ant1-/-) and 57 control (Ant1+/+) mice, between the ages of 2 and 21 months. Hearts were characterized by cardiac anatomy, echocardiographic imaging with velocity vector analysis, histopathology, and apoptosis assays. RESULTS the Ant1-/- mice developed a distinctive concentric dilated cardiomyopathy, characterized by substantial myocardial hypertrophy and ventricular dilation, with cardiac function declining earlier in age as compared to control mice. Left ventricular circumferential, radial, and rotational mechanics were reduced even in the younger mutants with preserved systolic function. Histopathologic analysis demonstrated increased myocyte hypertrophy, fibrosis, and calcification in the mutant mice as compared with control mice. Furthermore, increased cytoplasmic cytochrome c levels and caspase 3 activation were observed in the mutant mice. CONCLUSIONS our results demonstrate that mitochondrial energy deficiency is sufficient to cause dilated cardiomyopathy, confirming that energy defects are a factor in this disease. Energy deficiency initially leads to early mechanical dysfunction before a decline in left ventricular systolic function. Chronic energy deficiency with age then leads to heart failure. Our results now allow us to use the Ant1-/- mouse model for testing new therapies for ANT1 mutant patients.


European Journal of Echocardiography | 2017

Quantitative intravascular biological fluorescence-ultrasound imaging of coronary and peripheral arteries in vivo.

Dmitry Bozhko; Eric A. Osborn; Amir Rosenthal; Johan Verjans; Tetsuya Hara; Stephan Kellnberger; Georg Wissmeyer; Saak V. Ovsepian; Jason R. McCarthy; Adam Mauskapf; Ashley F Stein; Farouc A. Jaffer; Vasilis Ntziachristos

Aims (i) to evaluate a novel hybrid near-infrared fluorescence-intravascular ultrasound (NIRF-IVUS) system in coronary and peripheral swine arteries in vivo; (ii) to assess simultaneous quantitative biological and morphological aspects of arterial disease. Methods and results Two 9F/15MHz peripheral and 4.5F/40MHz coronary near-infrared fluorescence (NIRF)-IVUS catheters were engineered to enable accurate co-registrtation of biological and morphological readings simultaneously in vivo. A correction algorithm utilizing IVUS information was developed to account for the distance-related fluorescence attenuation due to through-blood imaging. Corrected NIRF (cNIRF)-IVUS was applied for in vivo imaging of angioplasty-induced vascular injury in swine peripheral arteries and experimental fibrin deposition on coronary artery stents, and of atheroma in a rabbit aorta, revealing feasibility to intravascularly assay plaque structure and inflammation. The addition of ICG-enhanced NIRF assessment improved the detection of angioplasty-induced endothelial damage compared to standalone IVUS. In addition, NIRF detection of coronary stent fibrin by in vivo cNIRF-IVUS imaging illuminated stent pathobiology that was concealed on standalone IVUS. Fluorescence reflectance imaging and microscopy of resected tissues corroborated the in vivo findings. Conclusions Integrated cNIRF-IVUS enables simultaneous co-registered through-blood imaging of disease related morphological and biological alterations in coronary and peripheral arteries in vivo. Clinical translation of cNIRF-IVUS may significantly enhance knowledge of arterial pathobiology, leading to improvements in clinical diagnosis and prognosis, and helps to guide the development of new therapeutic approaches for arterial diseases.


Journal of Cardiovascular Translational Research | 2013

Biological Imaging of Atherosclerosis: Moving Beyond Anatomy

Johan Verjans; Farouc A. Jaffer

Biological or molecular imaging is now providing exciting new strategies to study atherosclerosis in both animals and humans. These technologies hold the promise to provide disease-specific, molecular information within the context of a systemic or organ-specific disease beyond traditional anatomical-based imaging. By integration of biological, chemical, and anatomical imaging knowledge into diagnostic strategies, a more comprehensive and predictive picture of atherosclerosis is likely to emerge. As such, biological imaging is well positioned to study different stages of atherosclerosis and its treatment, including the sequence of atheroma initiation, progression, and plaque rupture. In this review, we describe the evolving concepts in atherosclerosis imaging with a focus on coronary artery disease, and we provide an overview of recent exciting translational developments in biological imaging. The illuminated examples and discussions will highlight how biological imaging is providing new clinical approaches to identify high-risk plaques, and to streamline the development process of new atherosclerosis therapies.


Methods of Molecular Biology | 2011

Molecular Imaging of Myocardial Remodeling After Infarction

Johan Verjans; Susanne W.M. van de Borne; Leonard Hofstra; Jagat Narula

Myocardial fibrosis after myocardial infarction plays a major role in cardiac remodeling, development of heart failure, and arrhythmias. Both replacement and interstitial fibrosis are determined by the extent of myofibroblastic proliferation and hence the extent of collagen deposition. It is logical to propose that a molecular imaging strategy that is able to determine the rate of myofibroblastic proliferation should be able to foretell the magnitude of myocardial remodeling and the likelihood of development of heart failure. Of various plausible targets on the proliferating myofibroblasts, receptors for neurohumoral agonists and overexpression of integrin moieties may offer best options for molecular imaging. In this chapter we describe the assessment of angiotensin II receptor and αvβ3 integrin upregulation in a mouse model after myocardial infarction using real time in vivo fluorescence imaging and nuclear imaging.

Collaboration


Dive into the Johan Verjans's collaboration.

Top Co-Authors

Avatar

Jagat Narula

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Artiom Petrov

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mani A. Vannan

University of California

View shared research outputs
Top Co-Authors

Avatar

Navneet Narula

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge