Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan W. H. Weijers is active.

Publication


Featured researches published by Johan W. H. Weijers.


Applied and Environmental Microbiology | 2011

13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3

Jaap S. Sinninghe Damsté; W. Irene C. Rijpstra; Ellen C. Hopmans; Johan W. H. Weijers; Bärbel U. Foesel; Jörg Overmann; Svetlana N. Dedysh

ABSTRACT The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C15 and C16:1ω7C as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.


Science | 2007

Coupled Thermal and Hydrological Evolution of Tropical Africa over the Last Deglaciation

Johan W. H. Weijers; Enno Schefuß; Stefan Schouten; Jaap S. Sinninghe Damsté

We analyzed the distribution of branched tetraether membrane lipids derived from soil bacteria in a marine sediment record that was recovered close to the Congo River outflow, and the results enabled us to reconstruct large-scale continental temperature changes in tropical Africa that span the past 25,000 years. Tropical African temperatures gradually increased from ∼21° to 25°C over the last deglaciation, which is a larger warming than estimated for the tropical Atlantic Ocean. A direct comparison with sea-surface temperature estimates from the same core revealed that the land-sea temperature difference was, through the thermal pressure gradient, an important control on central African precipitation patterns.


Geomicrobiology Journal | 2009

Constraints on the biological source(s) of the orphan branched tetraether membrane lipids

Johan W. H. Weijers; E. Panoto; J. van Bleiswijk; Stefan Schouten; Melike Balk; Alfons J. M. Stams; W.I.C. Rijpstra; J.S. Sinninghe Damsté

A soil profile from the Saxnäs Mosse peat bog, Sweden, has been analysed for glycerol dialkyl glycerol tetraether (GDGT) membrane lipids and 16S rRNA genes in order to constrain the source of the yet ‘orphan,’ but supposedly bacterial, branched GDGTs. Branched GDGT lipids dominate over archaeal membrane lipids. The Acidobacteria comprise the dominant bacterial group, accounting for the majority of total Bacteria, and are generally more abundant than methanogenic archaea. Analysed acidobacterial strains did not contain branched GDGT lipids. Thus, the source organism must likely be searched for in other acidobacterial phyla or in another abundant group within the remaining bacteria.


Science | 2006

Early Reactivation of European Rivers During the Last Deglaciation

Guillemette Ménot; Edouard Bard; Frauke Rostek; Johan W. H. Weijers; Ellen C. Hopmans; Stefan Schouten; Jaap S. Sinninghe Damsté

During the Last Glacial Maximum, the sea-level lowstand combined with the large extent of the Fennoscandian and British ice sheets led to the funneling of European continental runoff, resulting in the largest river system that ever drained the European continent. Here, we show an abrupt and early reactivation of the European hydrological cycle at the onset of the last deglaciation, leading to intense discharge of the Channel River into the Bay of Biscay. This freshwater influx, probably combined with inputs from proglacial or ice-dammed lakes, dramatically affected the hydrology of the region, both on land and in the ocean.


Global Biogeochemical Cycles | 2008

Contrasting lipid biomarker composition of terrestrial organic matter exported from across the Eurasian Arctic by the five great Russian Arctic rivers

Bart E. van Dongen; Igor Semiletov; Johan W. H. Weijers; Örjan Gustafsson

Contrasting lipid biomarker composition of terrestrial organic matter exported from across the Eurasian Arctic by the five great Russian Arctic rivers


Geochemistry Geophysics Geosystems | 2010

Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids

James Bendle; Johan W. H. Weijers; Mark A. Maslin; Jaap S. Sinninghe Damsté; Stefan Schouten; Ellen C. Hopmans; C. S. Boot; Richard D. Pancost

The Amazon basin is a major component of the global carbon and hydrological cycles, a significant natural source of methane, and home to remarkable biodiversity and endemism. Reconstructing past climate changes in the Amazon basin is important for a better understanding of the effect of such changes on these critical functions of the basin. Using a novel biomarker proxy, based on the membrane lipids of soil bacteria with a new regional calibration, we present a reconstruction of changes in mean annual air temperatures for the Amazon catchment during the last 37 kyr B. P. Biomarkers were extracted from Ocean Drilling Program sediment core ODP942 recovered from the Amazon fan. The Amazon fan is a major depository for terrestrial sediments, with the advantage that the terrestrial material captured reflects a regional integration of the whole river catchment. The reconstructed tropical Amazonian temperatures were similar to 5 degrees C cooler at the Last Glacial Maximum (similar to 21 degrees C) compared to modern values (similar to 26 degrees C). This is in agreement with previous estimates of tropical continental temperatures in the tropical Amazon basin and tropical Africa during the Last Glacial Maximum. Moreover, we also illustrate how the soil bacterial membrane lipid record reveals major changes in basin dynamics and sediment provenance during the glacial-Holocene transition, impacting the biomarker reconstructions from similar to 11 kyr onward.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary

Johan Vellekoop; Appy Sluijs; Jan Smit; Stefan Schouten; Johan W. H. Weijers; Jaap S. Sinninghe Damsté; Henk Brinkhuis

Significance Here, for the first time (to our knowledge), we are able to demonstrate unambiguously that the impact at the Cretaceous–Paleogene boundary (K–Pg, ∼66 Mya) was followed by a so-called “impact winter.” This impact winter was the result of the injection of large amounts of dust and aerosols into the stratosphere and significantly reduced incoming solar radiation for decades. Therefore, this phase will have been a key contributory element in the extinctions of many biological clades, including the dinosaurs. The K–Pg boundary impact presents a unique event in Earth history because it caused global change at an unparalleled rate. This detailed portrayal of the environmental consequences of the K–Pg impact and aftermath aids in our understanding of truly rapid climate change. The mass extinction at the Cretaceous–Paleogene boundary, ∼66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called “impact winter” phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis.


Geochemistry Geophysics Geosystems | 2013

An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures

Stefan Schouten; Ellen C. Hopmans; Antoni Rosell-Melé; Ann Pearson; Pierre Adam; Thorsten Bauersachs; Edouard Bard; Stefano M. Bernasconi; Thomas S. Bianchi; Jochen J. Brocks; Laura Truxal Carlson; Isla S. Castañeda; Sylvie Derenne; Ayça Doğrul Selver; Timothy I. Eglinton; Celine Fosse; Valier Galy; Kliti Grice; Kai-Uwe Hinrichs; Yongsong Huang; Arnaud Huguet; Carme Huguet; Sarah J. Hurley; Anitra E. Ingalls; Guodong Jia; Brendan J. Keely; Chris S. Knappy; Miyuki Kondo; Srinath Krishnan; Sara Lincoln

Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility +/- 3-4 degrees C when translated to temperature) but a large spread in BIT measurements (reproducibility +/- 0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0 degrees C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the true (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.


Environmental Microbiology | 2013

Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa)

Laura K. Buckles; Laura Villanueva; Johan W. H. Weijers; Dirk Verschuren; Jaap S. Sinninghe Damsté

Stratified lakes are important reservoirs of microbial diversity and provide habitats for niche differentiation of Archaea. In this study, we used a lipid biomarker/DNA-based approach to reveal the diversity and abundance of Archaea in the water column of Lake Challa (East Africa). Concentrations of intact polar lipid (IPL) crenarchaeol, a specific biomarker of Thaumarchaeota, were enhanced (1 ng l(-1) ) at the oxycline/nitrocline. The predominance of the more labile IPL hexose-phosphohexose crenarchaeol indicated the presence of an actively living community of Thaumarchaeota. Archaeal 16S rRNA clone libraries revealed the presence of thaumarchaeotal groups 1.1a and 1.1b at and above the oxycline. In the anoxic deep water, amoA gene abundance was an order of magnitude lower than at the oxycline and high abundance (∼90 ng l(-1) ) of an IPL with the acyclic glycerol dialkyl glycerol tetraether (GDGT-0) was evident. The predominance of archaeal 16S rRNA sequences affiliated to the uncultured crenarchaeota groups 1.2 and miscellaneous crenarchaeotic group (MCG) points to an origin of GDGT-0 from uncultured crenarchaeota. This study demonstrates the importance of thermal stratification and nutrient availability in the distribution of archaeal groups in lakes, which is relevant to constrain and validate temperature proxies based on archaeal GDGTs (i.e. TEX86 ).


Geochemistry Geophysics Geosystems | 2011

Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux

Johan W. H. Weijers; Katie L. H. Lim; Alfred Aquilina; Jaap S. Sinninghe Damsté; Richard D. Pancost

The TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) is a proxy for sea surface temperature (SST) based on the distribution of isoprenoidal glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by marine pelagic Thaumarchaeota. One of the caveats of this proxy is the production of additional GDGTs by sedimentary Euryarchaeota involved in anaerobic oxidation of methane (AOM) that occurs at deep-sea methane seeps but is also widespread in many continental shelf settings. Here, GDGT distributions are investigated through the sulfate-methane transition zone (SMTZ) in Aarhus Bay, Denmark, to examine the extent the TEX86 proxy is compromised in such a continental shelf setting where AOM is characterized by a diffusive rather than rapid advective methane flux. Both free extractable and non-extractable lipid fractions were analyzed as it was expected that pelagic-derived and sediment-derived GDGTs could become incorporated into the molecular and sedimentary matrix to a different extent. The results show a large change of TEX86 values mainly due to the relative high amounts of GDGT-2 produced by AOM-related Archaea, both in the free and non-extractable lipid fractions. This additional GDGT input renders calculation of SSTs based on TEX86 inappropriate at the SMTZ. The AOM-related GDGT signature, however, did not persist into deeper sediments, perhaps reflecting rapid remineralization of the GDGTs at the SMTZ. Although the process of AOM at Aarhus Bay might not be representative for all continental margin settings, it illustrates that AOM in a variety of settings, not just cold seeps, can influence sedimentary GDGT distributions.

Collaboration


Dive into the Johan W. H. Weijers's collaboration.

Top Co-Authors

Avatar

Stefan Schouten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Pancost

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge