Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan W. Mouton is active.

Publication


Featured researches published by Johan W. Mouton.


Clinical Microbiology and Infection | 2013

EUCAST Expert Rules in Antimicrobial Susceptibility Testing

Roland Leclercq; Rafael Cantón; Derek J. Brown; Christian G. Giske; Peter Heisig; Alasdair P. MacGowan; Johan W. Mouton; Patrice Nordmann; Arne C. Rodloff; Gian Maria Rossolini; Claude-James Soussy; Martin Steinbakk; T. G. Winstanley; Gunnar Kahlmeter

EUCAST expert rules have been developed to assist clinical microbiologists and describe actions to be taken in response to specific antimicrobial susceptibility test results. They include recommendations on reporting, such as inferring susceptibility to other agents from results with one, suppression of results that may be inappropriate, and editing of results from susceptible to intermediate or resistant or from intermediate to resistant on the basis of an inferred resistance mechanism. They are based on current clinical and/or microbiological evidence. EUCAST expert rules also include intrinsic resistance phenotypes and exceptional resistance phenotypes, which have not yet been reported or are very rare. The applicability of EUCAST expert rules depends on the MIC breakpoints used to define the rules. Setting appropriate clinical breakpoints, based on treating patients and not on the detection of resistance mechanisms, may lead to modification of some expert rules in the future.


Lancet Infectious Diseases | 2014

Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions

Jason A. Roberts; Mohd H. Abdul-Aziz; Jeffrey Lipman; Johan W. Mouton; Alexander A. Vinks; Tim Felton; William W. Hope; Andras Farkas; Michael Neely; Jerome J. Schentag; George L. Drusano; Otto R. Frey; Ursula Theuretzbacher; Joseph L. Kuti

Infections in critically ill patients are associated with persistently poor clinical outcomes. These patients have severely altered and variable antibiotic pharmacokinetics and are infected by less susceptible pathogens. Antibiotic dosing that does not account for these features is likely to result in suboptimum outcomes. In this Review, we explore the challenges related to patients and pathogens that contribute to inadequate antibiotic dosing and discuss how to implement a process for individualised antibiotic therapy that increases the accuracy of dosing and optimises care for critically ill patients. To improve antibiotic dosing, any physiological changes in patients that could alter antibiotic concentrations should first be established; such changes include altered fluid status, changes in serum albumin concentrations and renal and hepatic function, and microvascular failure. Second, antibiotic susceptibility of pathogens should be confirmed with microbiological techniques. Data for bacterial susceptibility could then be combined with measured data for antibiotic concentrations (when available) in clinical dosing software, which uses pharmacokinetic/pharmacodynamic derived models from critically ill patients to predict accurately the dosing needs for individual patients. Individualisation of dosing could optimise antibiotic exposure and maximise effectiveness.


Infection Control and Hospital Epidemiology | 1996

Reduction of Surgical-Site Infections in Cardiothoracic Surgery by Elimination of Nasal Carriage of Staphylococcus aureus

Jan Kluytmans; Johan W. Mouton; Marjolein F. Q. VandenBergh; Marie-José A. A. J. Manders; Alexander P.W.M. Maat; J. H. T. Wagenvoort; M. F. Michel; Henri A. Verbrugh

OBJECTIVE To test the hypothesis that perioperative elimination of nasal carriage of Staphylococcus aureus using mupirocin nasal ointment reduces the surgical-site infection (SSI) rate in cardiothoracic surgery. DESIGN Unblinded intervention trial with historical controls. SETTING A university hospital, tertiary referral center for cardiothoracic surgery. PATIENTS Consecutive patients undergoing cardiothoracic surgery between August 1, 1989, and February 1, 1991 (historical control group), and between March 1, 1991, and August 1, 1992 (intervention group). RESULTS The historical control group consisted of 928 patients and the intervention group of 868, of whom 752 actually were treated. The 116 patients who were unintentionally not treated were considered as a concurrent control group. In the intention-to-treat analysis, a significant reduction in SSI rate was observed after the intervention (historical-control group 7.3% and intervention group 2.8%; P < .0001). The SSI rate in the concurrent control group was significantly higher than in the treated group (7.8% and 2.0%, respectively; P = .0023). Resistance of S aureus to mupirocin was not observed. CONCLUSION The results of this study indicate that perioperative elimination of nasal carriage using mupirocin nasal ointment significantly reduces the SSI rate in cardiothoracic surgery patients and warrants a prospective, randomized, placebo-controlled efficacy trial. This preventive measure may be beneficial in other categories of surgical patients as well.


Antimicrobial Agents and Chemotherapy | 1994

Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model.

Johan W. Mouton; J. G. Den Hollander

An in vitro pharmacokinetic model mimicking human serum drug concentrations, based on a dialyzer unit, was developed to study the efficacies of continuous infusion and intermittent administration of ceftazidime over a period of 36 h. The daily dose of ceftazidime was 300 mg/liter/24 h given either as a continuous infusion or as three bolus doses. The intermittent dosing regimen yielded peak and trough concentrations after the fourth dose of 92.3 (standard deviation, 8.0) and 1.4 (standard deviation, 0.9) mg/liter, respectively. Continuous administration yielded concentrations of approximately 20 mg/liter. To study efficacy, three Pseudomonas aeruginosa strains, ATCC 27853, CF4, and CF16, were used. The MICs of ceftazidime for these strains were 1, 4, and 16 mg/liter, respectively. Strain CF16 was killed initially during both regimens and then started to regrow. At the end of the fourth dosing interval, i.e., after 32 h, viable counts showed no difference between the regimens. Strains ATCC 27853 and CF4 were killed initially during both dosing schedules, and after the first dosing interval viable counts were similar. However, after the fourth interval, there was a marked difference between bacterial counts during continuous and intermittent infusion, being 2.2 and 2.8 log10, respectively, demonstrating a greater efficacy during continuous infusion. The results indicate that, in the absence of other factors, a sustained level of ceftazidime around or slightly above the MIC is not high enough to maintain efficacy over more than one (8-h) dosing interval. When sustained concentrations higher than four times the MIC are employed, continuous administration in this model is more efficacious than intermittent dosing.


Antimicrobial Agents and Chemotherapy | 2002

In Vitro Activities of New and Conventional Antifungal Agents against Clinical Scedosporium Isolates

Joseph Meletiadis; Jacques F. Meis; Johan W. Mouton; Juan Luis Rodriquez-Tudela; J. Peter Donnelly; Paul E. Verweij

ABSTRACT The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC90s) being >8 μg/ml; the MIC90s of voriconazole and UR-9825, however, were 4 μg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC90s, 0.5 μg/ml), followed by miconazole (MIC90s, 1 μg/ml), UR-9825 and posaconazole (MIC90s, 2 μg/ml), and itraconazole (MIC90s, 4 μg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.


Antimicrobial Agents and Chemotherapy | 2003

In Vitro Drug Interaction Modeling of Combinations of Azoles with Terbinafine against Clinical Scedosporium prolificans Isolates

Joseph Meletiadis; Johan W. Mouton; Jacques F. Meis; Paul E. Verweij

ABSTRACT The in vitro interaction between terbinafine and the azoles voriconazole, miconazole, and itraconazole against five clinical Scedosporium prolificans isolates after 48 and 72 h of incubation was tested by a microdilution checkerboard (eight-by-twelve) technique. The antifungal effects of the drugs alone and in combination on the fungal biomass as well as on the metabolic activity of fungi were measured using a spectrophotometric method and two colorimetric methods, based on the lowest drug concentrations showed 75 and 50% growth inhibition (MIC-1 and MIC-2, respectively). The nature and the intensity of the interactions were assessed using a nonparametric approach (fractional inhibitory concentration [FIC] index model) and a fully parametric response surface approach (Greco model) of the Loewe additivity (LA) no-interaction theory as well as a nonparametric (Prichard model) and a semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found between each of the three azoles and terbinafine in all cases, although with different intensities. A 27- to 64-fold and 16- to 90-fold reduction of the geometric mean of the azole and terbinafine MICs, respectively, was observed when they were combined, resulting in FIC indices of <1 to 0.02. Using the MIC-1 higher levels of synergy were obtained, , which were more consistent between the two incubation periods than using the MIC-2. The strongest synergy among the azoles was found with miconazole using the BI-based models and with voriconazole using the LA-based models. The synergistic effects both on fungal growth and metabolic activity were more potent after 72 h of incubation. Fully parametric approaches in combination with the modified colorimetric method might prove useful for testing the in vitro interaction of antifungal drugs against filamentous fungi.


Clinical Pharmacokinectics | 2000

Comparative Pharmacokinetics of the Carbapenems Clinical Implications

Johan W. Mouton; Daan Touw; Alphonsus M. Horrevorts; Alexander A. Vinks

During the last few decades, several carbapenems have been developed. The major characteristic of the newer drugs, such as MK-826, is a prolonged half-life. Alternatively, some carbapenems have been developed that can be given orally, such as CS-834 and L-084. Although imipenem and panipenem have to be administered with a co-drug to prevent degradation by the enzyme dehydropeptidase-1 and reduce nephrotoxicity, the newer drugs such as meropenem, biapenem and lenapenem are relatively stable towards that enzyme. Structural modifications have, besides changes in pharmacology, also led to varying antimicrobial properties. For instance, meropenem is relatively more active against Gram-negative organisms than most other carbapenems, but is slightly less active against Gram-positive organisms.Except for half-life and bioavailability, the pharmacokinetic properties of the carbapenems are relatively similar. Distribution is mainly in extracellular body-water, as observed both from the volumes of distribution and from blister studies. Some carbapenems have a better penetration in cerebrospinal fluid than others. In patients with renal dysfunction, doses have to be adjusted, and special care must be taken with imipenem/cilastatin and panipenem/betamipron to prevent accumulation of the co-drugs, as the pharmacokinetic properties of the co-drugs differ from those of the drugs themselves. However, toxicity of the co-drugs has not been shown. The carbapenems differ in proconvulsive activity. Imipenem shows relatively the highest proconvulsive activity, especially at higher concentrations.Pharmacodynamic studies have shown that the major surrogate parameter for antimicrobial efficacy is the percentage of time of the dosage interval above the minimum inhibitory concentration (MIC). The minimum percentage percentage of time above the MIC (TaM) needed for optimal effect is known in animals (30 to 50%), but not in humans. It is probably less than 100%, but may be higher than 50%. Dosage regimens currently in use result in a TaM of about 50% at 4 mg/L, which is the current ‘susceptible’ breakpoint determined by the National Committee for Clinical Laboratory Standards (NCCLS) for most micro-organisms. Dosage regimens in patients with reduced renal clearance should be based on the TaM. The increased half-life of the newer carbapenems will probably lead to less frequent administration, although continuous infusion may still be the optimal mode of administration for these drugs. The availability of oral carbapenems will have a profound effect on the use of carbapenems in the community.


Journal of Clinical Microbiology | 2005

Use of a Novel Panel of Nine Short Tandem Repeats for Exact and High-Resolution Fingerprinting of Aspergillus fumigatus Isolates

Hanneke A. de Valk; Jacques F. Meis; Ilse M. Curfs; Konrad Muehlethaler; Johan W. Mouton; Corné H. W. Klaassen

ABSTRACT Here we describe a new panel of short tandem repeats (STRs) for a novel exact typing assay that can be used to discriminate between Aspergillus fumigatus isolates. A total of nine STR markers were selected from available genomic A. fumigatus sequences and were divided into three multicolor multiplex PCRs. Each multiplex reaction amplified three di-, tri-, or tetranucleotide repeats, respectively. All nine STR markers were used to analyze 100 presumably unrelated A. fumigatus isolates. For each marker, between 11 and 37 alleles were found in this population. One isolate proved to be a mixture of at least two different isolates. With the remaining 99 isolates, 96 different fingerprinting profiles were obtained. The Simpsons diversity index for the individual markers ranged from 0.77 to 0.97. The diversity index for the multiplex combination of di-, tri-, and tetranucleotide repeats ranged from 0.9784 to 0.9968. The combination of all nine markers yielded a Simpsons diversity index of 0.9994, indicative of the high discriminatory power of these new loci. In theory, this panel of markers is able to discriminate between no less than 27 × 109 different genotypes. The multicolor multiplex approach allows large numbers of markers to be tested in a short period of time. The exact nature of the assay combines high reproducibility with the easy exchange of results and makes it a very suitable tool for large-scale epidemiological studies.


Journal of Clinical Microbiology | 2001

Colorimetric assay for antifungal susceptibility testing of Aspergillus species.

Joseph Meletiadis; Johan W. Mouton; Jacques F. Meis; Bianca A. Bouman; J.P. Donnelly; Paul E. Verweij

ABSTRACT A colorimetric assay for antifungal susceptibility testing ofAspergillus species (Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus nidulans, and Aspergillus ustus) is described based on the reduction of the tetrazolium salt 2,3-bis(2-methoxy-4-nitro-5-[(sulphenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) in the presence of menadione as an electron-coupling agent. The combination of 200 μg of XTT/ml with 25 μM menadione resulted in a high production of formazan within 2 h of exposure, allowing the detection of hyphae formed by low inocula of 102 CFU/ml after 24 h of incubation. Under these settings, the formazan production correlated linearly with the fungal biomass and less-variable concentration effect curves for amphotericin B and itraconazole were obtained.


Drug Resistance Updates | 2012

Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria.

Jakko van Ingen; Martin J. Boeree; Dick van Soolingen; Johan W. Mouton

Nontuberculous mycobacteria (NTM) are increasingly recognized as causative agents of opportunistic infections in humans. For most NTM infections the therapy of choice is drug treatment, but treatment regimens differ by species, in particular between slow (e.g. Mycobacterium avium complex, Mycobacterium kansasii) and rapid growers (e.g. Mycobacterium abscessus, Mycobacterium fortuitum). In general, drug treatment is long, costly, and often associated with drug-related toxicities; outcome of drug treatment is poor and is likely related to the high levels of natural antibiotic resistance in NTM. The role of drug susceptibility testing (DST) in the choice of agents for antimicrobial treatment of NTM disease, mainly that by slow growers, remains subject of debate. There are important discrepancies between drug susceptibility measured in vitro and the activity of the drug observed in vivo. In part, these discrepancies derive from laboratory technical issues. There is still no consensus on a standardized method. With the increasing clinical importance of NTM disease, DST of NTM is again in the spotlight. This review provides a comprehensive overview of the mechanisms of drug resistance in NTM, phenotypic methods for testing susceptibility in past and current use for DST of NTM, as well as molecular approaches to assess drug resistance.

Collaboration


Dive into the Johan W. Mouton's collaboration.

Top Co-Authors

Avatar

Paul E. Verweij

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jacques F. Meis

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Joseph Meletiadis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anouk E. Muller

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander A. Vinks

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henri A. Verbrugh

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jakko van Ingen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge