Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanan L. Codona is active.

Publication


Featured researches published by Johanan L. Codona.


Optics Letters | 2011

In vivo imaging of the human rod photoreceptor mosaic

Nathan Doble; Stacey S. Choi; Johanan L. Codona; Julian C. Christou; Jay M. Enoch; David R. Williams

Although single cone receptors have been imaged in vivo, to our knowledge there has been no observation of rods in the living normal eye. Using an adaptive optics ophthalmoscope and post processing, evidence of a rod mosaic was observed at 5° and 10° eccentricities in the horizontal temporal retina. For four normal human subjects, small structures were observed between the larger cones and were observed repeatedly at the same locations on different days, and with varying wavelengths. Image analysis gave spacings that agree well with rod measurements from histological data.


Proceedings of SPIE | 2012

The vector-APP: a broadband apodizing phase plate that yields complementary PSFs

Frans Snik; Gilles Otten; Matthew A. Kenworthy; Matthew N. Miskiewicz; Michael J. Escuti; C. Packham; Johanan L. Codona

The apodizing phase plate (APP) is a solid-state pupil optic that clears out a D-shaped area next to the core of the ensuing PSF. To make the APP more efficient for high-contrast imaging, its bandwidth should be as large as possible, and the location of the D-shaped area should be easily swapped to the other side of the PSF. We present the design of a broadband APP that yields two PSFs that have the opposite sides cleared out. Both properties are enabled by a half-wave liquid crystal layer, for which the local fast axis orientation over the pupil is forced to follow the required phase structure. For each of the two circular polarization states, the required phase apodization is thus obtained, and, moreover, the PSFs after a quarter-wave plate and a polarizing beam-splitter are complementary due to the antisymmetric nature of the phase apodization. The device can be achromatized in the same way as half-wave plates of the Pancharatnam type or by layering self-aligning twisted liquid crystals to form a monolithic film called a multi-twist retarder. As the VAPP introduces a known phase diversity between the two PSFs, they may be used directly for wavefront sensing. By applying an additional quarter-wave plate in front, the device also acts as a regular polarizing beam-splitter, which therefore furnishes high-contrast polarimetric imaging. If the PSF core is not saturated, the polarimetric dual-beam correction can also be applied to polarized circumstellar structure. The prototype results show the viability of the vector-APP concept.


Proceedings of SPIE | 2012

The Giant Magellan Telescope adaptive optics program

Antonin H. Bouchez; D. Scott Acton; Guido Agapito; Carmelo Arcidiacono; Francis Bennet; Valdemaro Biliotti; Marco Bonaglia; Runa Briguglio; Guido Brusa-Zappellini; Lorenzo Busoni; Luca Carbonaro; Johanan L. Codona; Rodolphe Conan; Thomas Connors; Oliver Durney; Brady Espeland; Simone Esposito; Luca Fini; Rusty Gardhouse; Thomas Gauron; Michael Hart; Philip M. Hinz; Srikrishna Kanneganti; Edward J. Kibblewhite; Russell P. Knox; Brian A. McLeod; T. McMahon; M. Montoya; Timothy J. Norton; Mark P. Ordway

The Giant Magellan Telescope (GMT) adaptive optics (AO) system will be an integral part of the telescope, providing laser guidestar generation, wavefront sensing, and wavefront correction to every instrument currently planned on the 25.4 m diameter GMT. There will be three first generation AO observing modes: Natural Guidestar, Laser Tomography, and Ground Layer AO. All three will use a segmented adaptive secondary mirror to deliver a corrected beam directly to the instruments. The Natural Guidestar mode will provide extreme AO performance, with a total wavefront error less than 185 nm RMS using bright guidestars. The Laser Tomography mode uses 6 lasers and a single off-axis natural guidestar to deliver better than 290 nm RMS wavefront error at the science target, over 50% of the sky at the galactic pole. The Ground Layer mode uses 4 natural guidestars on the periphery of the science field to tomographically reconstruct and correct the ground layer AO turbulence, improving the image quality for wide-field instruments. A phasing system maintains the relative alignment of the primary and secondary segments using edge sensors and continuous feedback from an off-axis guidestar. We describe the AO system preliminary design, predicted performance, and the remaining technical challenges as we move towards the start of construction.


The Astrophysical Journal | 2017

ON-SKY PERFORMANCE ANALYSIS OF THE VECTOR APODIZING PHASE PLATE CORONAGRAPH ON MagAO/Clio2

Gilles Otten; Frans Snik; Matthew A. Kenworthy; Christoph U. Keller; Jared R. Males; Katie M. Morzinski; Laird M. Close; Johanan L. Codona; Philip M. Hinz; Kathryn J. Hornburg; Leandra Brickson; Michael J. Escuti

Netherlands Organization for Scientific Research (NWO); European Research Council [678194]; NASA Exoplanets Research Program (XRP) [NNX16AD44G]


The Astrophysical Journal | 2013

Focal Plane Wavefront Sensing Using Residual Adaptive Optics Speckles

Johanan L. Codona; Matthew A. Kenworthy

Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO systems wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.


Proceedings of SPIE | 2006

Design of the adaptive optics systems for GMT

Michael Lloyd-Hart; Roger Angel; N. Mark Milton; Matt Rademacher; Johanan L. Codona

The Giant Magellan Telescope (GMT) includes adaptive optics (AO) as an integral component of its design. Planned scientific applications of AO span an enormous parameter space: wavelengths from 1 to 25 μm, fields of view from 1 arcsec to 8 arcmin, and contrast ratio as high as 109. The integrated systems are designed about common core elements. The telescopes Gregorian adaptive secondary mirror, with seven segments matched to the primary mirror segments, will be used for wavefront correction in all AO modes, providing for high throughput and very low background in the thermal infrared. First light with AO will use wavefront reconstruction from a constellation of six continuous-wave sodium laser guide stars to provide ground-layer correction over 8 arcmin and diffraction-limited correction of small fields. Natural guide stars will be used for classical AO and high contrast imaging. The AO system is configured to feed both the initial instrument suite and ports for future expansion.


International Journal of Astrobiology | 2015

The NIR arm of SHARK: System for coronagraphy with High-order Adaptive optics from R to K bands

Jacopo Farinato; C. Baffa; Andrea Baruffolo; Maria Bergomi; Luca Carbonaro; Alexis Carlotti; Mauro Centrone; Johanan L. Codona; Marco Dima; Simone Esposito; D. Fantinel; Giancarlo Farisato; Wolfgang Gaessler; E. Giallongo; Davide Greggio; Philip M. Hinz; Franco Lisi; Demetrio Magrin; Luca Marafatto; Fernando Pedichini; Enrico Pinna; Alfio Puglisi; Roberto Ragazzoni; Bernardo Salasnich; Marco Stangalini; Christophe Verinaud; Valentina Viotto

SHARK is a proposal aimed at investigating the technical feasibility and the scientific capabilities of high-contrast cameras to be implemented at the Large Binocular Telescope (LBT). SHARK foresees two separated channels: near-infrared (NIR) channel and visible, both providing imaging and coronagraphic modes. We describe here the SHARK instrument concept, with particular emphasis on the NIR channel at the level of a conceptual study, performed in the framework of the call for proposals for new LBT instruments. The search for giant extra-Solar planets is the main science case, as we will outline in the paper.


Astronomical Telescopes and Instrumentation | 2003

20 and 30 m telescope designs with potential for subsequent incorporation into a track-mounted pair (20/20 or 30/30).

James Roger P. Angel; James H. Burge; Johanan L. Codona; Warren B. Davison; Buddy Martin

Any future giant ground-based telescope must, at a minimum, provide foci for seeing-limited imaging over a wide field and for diffraction-limited imaging over ~1 arcminute fields corrected by adaptive optics (AO). While this is possible with a number of design concepts, our choices are constrained if we anticipate wanting to later add a second telescope for imaging with still higher resolution, and very high contrast imaging for exoplanet studies. This paper explores designs that allow for such future development. Higher resolution imaging by interferometric combination of the AO-corrected fields of two telescopes is possible without loss of point-source sensitivity or field of view, as long as the baseline can be held perpendicular to the source and can be varied in length. This requirement is made practical even for very large telescopes, provided both can move continuously on a circular track. The 20/20 telescope illustrates this concept. Telescopes so mounted can additionally be operated as Bracewell nulling interferometers with low thermal background, making possible the thermal detection of planets that would have been unresolvable by a single 20 m aperture. In practice, limits set by funding and engineering experience will likely require a single 20 or 30 m telescope be built first. This would be on a conventional alt-az mount, but it should be at a site with enough room for later addition of a companion and track. In anticipation of future motion it should be compact and stiff, with a fast primary focal ratio. We envisage the use of large, highly aspheric, off-axis segments, manufactured using the figuring methods for strong aspherics already proven for 8 m class primaries. A compact giant telescope built under these guidelines should be able to perform well on its own for a broad range of astronomical observations, with good resistance to wind buffeting and simple alignment and control of its few, large segments. We compare here configurations with adjacent hexagonal segments and close-packed circular segments. For given segment parent size and number, the largest effective aperture is achieved if the segments are left as circles, when also the sensitivity and resolution for diffraction-limited operation with AO is higher. Large round segments can also be individually apodized for high-contrast imaging of exoplanets with the entire telescope-for example 8.4 m segments will yield 10-6 suppression 0.05 arcsec from a star at 1 μm wavelength, and at 0.25 arcsec at 5 μm.


Proceedings of SPIE | 2012

A prototype phasing camera for the Giant Magellan Telescope

Srikrishna Kanneganti; Brian A. McLeod; Mark Ordway; John B. Roll; Stephen A. Shectman; Antonin H. Bouchez; Johanan L. Codona; Roger Eng; Thomas Gauron; Felix Handte; Timothy Norton; Phil Streechon; David R. Weaver

Achieving the diffraction limit with the adaptive optics system of the 25m Giant Magellan Telescope will require that the 7 pairs of mirror segments be in phase. Phasing the GMT is made difficult because of the 30-40cm gaps between the primary mirror segments. These large gaps result in atmospheric induced phase errors making optical phasing difficult at visible wavelengths. The large gaps between the borosilicate mirror segments also make an edge sensing system prone to thermally induced instability. We describe an optical method that uses twelve 1.5-m square subapertures that span the segment boundaries. The light from each subaperture is mapped onto a MEMS mirror segment and then a lenslet array which are used to stabilize the atmospherically induced image motion. Centroids for stabilization are measured at 700nm. The piston error is measured from the fringes visible in each of the 12 stabilized images at 2.2 microns. By dispersing the fringes we can resolve 2π phase ambiguities. We are constructing a prototype camera to be deployed at the 6.5m Magellan Clay telescope.


Proceedings of SPIE | 2010

Modeling the adaptive optics systems on the Giant Magellan Telescope

Marcos A. van Dam; Philip M. Hinz; Johanan L. Codona; Michael Hart; Aurea Garcia-Rissmann; Matt Johns; Stephen A. Shectman; Antonin H. Bouchez; Brian A. McLeod; Francois Rigaut

Modeling adaptive optics (AO) systems is crucial to understanding their performance and a key aid in their design. The Giant Magellan Telescope (GMT) is planning three AO modes at first light: natural guide star AO, ground-layer AO and laser tomography AO. This paper describes how a modified version of YAO, an open-source general-purpose AO simulation tool written in Yorick, is used to simulate the GMT AO modes. The simulation tool was used to determine the piston segment error for the GMT. In addition, we present a comparison of different turbulence simulation approaches.

Collaboration


Dive into the Johanan L. Codona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge