Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johann Böhm is active.

Publication


Featured researches published by Johann Böhm.


Proceedings of the National Academy of Sciences of the United States of America | 2010

MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers.

Alan H. Beggs; Johann Böhm; Elizabeth Snead; Marek Kozlowski; Marie Maurer; Katie Minor; Martin K. Childers; Susan M. Taylor; Christophe Hitte; James R. Mickelson; Ling T. Guo; Andrew P. Mizisin; Anna Buj-Bello; Laurent Tiret; Jocelyn Laporte; G. Diane Shelton

Mutations in the MTM1 gene encoding myotubularin cause X-linked myotubular myopathy (XLMTM), a well-defined subtype of human centronuclear myopathy. Seven male Labrador Retrievers, age 14–26 wk, were clinically evaluated for generalized weakness and muscle atrophy. Muscle biopsies showed variability in fiber size, centrally placed nuclei resembling fetal myotubes, and subsarcolemmal ringed and central dense areas highlighted with mitochondrial specific reactions. Ultrastructural studies confirmed the centrally located nuclei, abnormal perinuclear structure, and mitochondrial accumulations. Wild-type triads were infrequent, with most exhibiting an abnormal orientation of T tubules. MTM1 gene sequencing revealed a unique exon 7 variant in all seven affected males, causing a nonconservative missense change, p.N155K, which haplotype data suggest derives from a recent founder in the local population. Analysis of a worldwide panel of 237 unaffected Labrador Retrievers and 59 additional control dogs from 25 other breeds failed to identify this variant, supporting it as the pathogenic mutation. Myotubularin protein levels and localization were abnormal in muscles from affected dogs, and expression of GFP-MTM1 p.N155K in COS-1 cells showed that the mutant protein was sequestered in proteasomes, where it was presumably misfolded and prematurely degraded. These data demonstrate that XLMTM in Labrador Retrievers is a faithful genetic model of the human condition.


American Journal of Human Genetics | 2013

Constitutive Activation of the Calcium Sensor STIM1 Causes Tubular-Aggregate Myopathy

Johann Böhm; Frédéric Chevessier; André Maues de Paula; Catherine Koch; Shahram Attarian; Claire Feger; Daniel Hantaï; P. Laforêt; Karima Ghorab; Jean-Michel Vallat; Michel Fardeau; Dominique Figarella-Branger; Jean Pouget; Norma B. Romero; Marc Koch; Claudine Ebel; Nicolas Lévy; Martin Krahn; Bruno Eymard; Marc Bartoli; Jocelyn Laporte

Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca(2+) sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca(2+)-binding EF hands. Ca(2+) stores are refilled through a process called store-operated Ca(2+) entry (SOCE). Upon Ca(2+)-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca(2+) entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca(2+) sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca(2+) level in TAM cells and a dysregulation of intracellular Ca(2+) homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.


Human Mutation | 2012

Mutation spectrum in the large GTPase dynamin 2, and genotype–phenotype correlation in autosomal dominant centronuclear myopathy

Johann Böhm; Valérie Biancalana; Elizabeth T. DeChene; Marc Bitoun; Christopher R. Pierson; Elise Schaefer; H. Karasoy; Melissa A. Dempsey; Fabrice A.C. Klein; Nicolas Dondaine; Christine Kretz; Nicolas Haumesser; Claire Poirson; Anne Toussaint; Rebecca S. Greenleaf; Melissa A. Barger; Lane J. Mahoney; Peter B. Kang; Edmar Zanoteli; John Vissing; Nanna Witting; Andoni Echaniz-Laguna; Carina Wallgren-Pettersson; James J. Dowling; Luciano Merlini; Anders Oldfors; Lilian Bomme Ousager; Judith Melki; Amanda Krause; Christina Jern

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM‐related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice‐site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue‐specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33:949–959, 2012.


Acta Neuropathologica | 2012

Next generation sequencing for molecular diagnosis of neuromuscular diseases

Nasim Vasli; Johann Böhm; Stephanie Gras; Jean Muller; Cécile Pizot; Bernard Jost; Andoni Echaniz-Laguna; Vincent Laugel; Christine Tranchant; Rafaëlle Bernard; Frédéric Plewniak; Serge Vicaire; Nicolas Lévy; Jamel Chelly; Jean-Louis Mandel; Valérie Biancalana; Jocelyn Laporte

Inherited neuromuscular disorders (NMD) are chronic genetic diseases posing a significant burden on patients and the health care system. Despite tremendous research and clinical efforts, the molecular causes remain unknown for nearly half of the patients, due to genetic heterogeneity and conventional molecular diagnosis based on a gene-by-gene approach. We aimed to test next generation sequencing (NGS) as an efficient and cost-effective strategy to accelerate patient diagnosis. We designed a capture library to target the coding and splice site sequences of all known NMD genes and used NGS and DNA multiplexing to retrieve the pathogenic mutations in patients with heterogeneous NMD with or without known mutations. We retrieved all known mutations, including point mutations and small indels, intronic and exonic mutations, and a large deletion in a patient with Duchenne muscular dystrophy, validating the sensitivity and reproducibility of this strategy on a heterogeneous subset of NMD with different genetic inheritance. Most pathogenic mutations were ranked on top in our blind bioinformatic pipeline. Following the same strategy, we characterized probable TTN, RYR1 and COL6A3 mutations in several patients without previous molecular diagnosis. The cost was less than conventional testing for a single large gene. With appropriate adaptations, this strategy could be implemented into a routine genetic diagnosis set-up as a first screening approach to detect most kind of mutations, potentially before the need of more invasive and specific clinical investigations. An earlier genetic diagnosis should provide improved disease management and higher quality genetic counseling, and ease access to therapy or inclusion into therapeutic trials.


Orphanet Journal of Rare Diseases | 2010

Case report of intrafamilial variability in autosomal recessive centronuclear myopathy associated to a novel BIN1 stop mutation

Johann Böhm; Uluç Yiş; Ragıp Ortaç; Handan Cakmakci; Semra Hız Kurul; Eray Dirik; Jocelyn Laporte

Centronuclear myopathies (CNM) describe a group of rare muscle diseases typically presenting an abnormal positioning of nuclei in muscle fibers. To date, three genes are known to be associated to a classical CNM phenotype. The X-linked neonatal form (XLCNM) is due to mutations in MTM1 and involves a severe and generalized muscle weakness at birth. The autosomal dominant form results from DNM2 mutations and has been described with early childhood and adult onset (ADCNM). Autosomal recessive centronuclear myopathy (ARCNM) is less characterized and has recently been associated to mutations in BIN1, encoding amphiphysin 2. Here we present the first clinical description of intrafamilal variability in two first-degree cousins with a novel BIN1 stop mutation. In addition to skeletal muscle defects, both patients have mild mental retardation and the more severely affected male also displays abnormal ventilation and cardiac arrhythmia, thus expanding the phenotypic spectrum of BIN1-related CNM to non skeletal muscle defects. We provide an up-to-date review of all previous cases with ARCNM and BIN1 mutations.


Brain | 2014

Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations

Johann Böhm; Valérie Biancalana; Edoardo Malfatti; Nicolas Dondaine; Catherine Koch; Nasim Vasli; Wolfram Kress; Matthias Strittmatter; Ana Lia Taratuto; Hernan Gonorazky; P. Laforêt; Thierry Maisonobe; Montse Olivé; Laura González-Mera; Michel Fardeau; Nathalie Carrière; Pierre Clavelou; Bruno Eymard; Marc Bitoun; John Rendu; Julien Fauré; Joachim Weis; Jean-Louis Mandel; Norma B. Romero; Jocelyn Laporte

Centronuclear myopathies are congenital muscle disorders characterized by type I myofibre predominance and an increased number of muscle fibres with nuclear centralization. The severe neonatal X-linked form is due to mutations in MTM1, autosomal recessive centronuclear myopathy with neonatal or childhood onset results from mutations in BIN1 (amphiphysin 2), and dominant cases were previously associated to mutations in DNM2 (dynamin 2). Our aim was to determine the genetic basis and physiopathology of patients with mild dominant centronuclear myopathy without mutations in DNM2. We hence established and characterized a homogeneous cohort of nine patients from five families with a progressive adult-onset centronuclear myopathy without facial weakness, including three sporadic cases and two families with dominant disease inheritance. All patients had similar histological and ultrastructural features involving type I fibre predominance and hypotrophy, as well as prominent nuclear centralization and clustering. We identified heterozygous BIN1 mutations in all patients and the molecular diagnosis was complemented by functional analyses. Two mutations in the N-terminal amphipathic helix strongly decreased the membrane-deforming properties of amphiphysin 2 and three stop-loss mutations resulted in a stable protein containing 52 supernumerary amino acids. Immunolabelling experiments revealed abnormal central accumulation of dynamin 2, caveolin-3, and the autophagic marker p62, and general membrane alterations of the triad, the sarcolemma, and the basal lamina as potential pathological mechanisms. In conclusion, we identified BIN1 as the second gene for dominant centronuclear myopathy. Our data provide the evidence that specific BIN1 mutations can cause either recessive or dominant centronuclear myopathy and that both disorders involve different pathomechanisms.


PLOS ONE | 2013

An integrated diagnosis strategy for congenital myopathies.

Johann Böhm; Nasim Vasli; Edoardo Malfatti; Stephanie Gras; Claire Feger; Bernard Jost; Nicole Monnier; Julie Brocard; H. Karasoy; Marion Gerard; Maggie C. Walter; Peter Reilich; Valérie Biancalana; Christine Kretz; Nadia Messaddeq; Isabelle Marty; Joël Lunardi; Norma B. Romero; Jocelyn Laporte

Congenital myopathies are severe muscle disorders affecting adults as well as children in all populations. The diagnosis of congenital myopathies is constrained by strong clinical and genetic heterogeneity. Moreover, the majority of patients present with unspecific histological features, precluding purposive molecular diagnosis and demonstrating the need for an alternative and more efficient diagnostic approach. We used exome sequencing complemented by histological and ultrastructural analysis of muscle biopsies to identify the causative mutations in eight patients with clinically different skeletal muscle pathologies, ranging from a fatal neonatal myopathy to a mild and slowly progressive myopathy with adult onset. We identified RYR1 (ryanodine receptor) mutations in six patients and NEB (nebulin) mutations in two patients. We found novel missense and nonsense mutations, unraveled small insertions/deletions and confirmed their impact on splicing and mRNA/protein stability. Histological and ultrastructural findings of the muscle biopsies of the patients validated the exome sequencing results. We provide the evidence that an integrated strategy combining exome sequencing with clinical and histopathological investigations overcomes the limitations of the individual approaches to allow a fast and efficient diagnosis, accelerating the patient’s access to a better healthcare and disease management. This is of particular interest for the diagnosis of congenital myopathies, which involve very large genes like RYR1 and NEB as well as genetic and phenotypic heterogeneity.


Acta neuropathologica communications | 2014

Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype.

Edoardo Malfatti; Vilma-Lotta Lehtokari; Johann Böhm; Josine M. de Winter; Ursula Schäffer; Brigitte Estournet; Susana Quijano-Roy; Soledad Monges; Fabiana Lubieniecki; Remi Bellance; Mai Thao Viou; A. Madelaine; Bin Wu; Ana Lia Taratuto; Bruno Eymard; Katarina Pelin; Michel Fardeau; C. Ottenheijm; Carina Wallgren-Pettersson; Jocelyn Laporte; Norma B. Romero

Nemaline myopathy (NM) is a rare congenital myopathy characterised by hypotonia, muscle weakness, and often skeletal muscle deformities with the presence of nemaline bodies (rods) in the muscle biopsy. The nebulin (NEB) gene is the most commonly mutated and is thought to account for approximately 50% of genetically diagnosed cases of NM. We undertook a detailed muscle morphological analysis of 14 NEB-mutated NM patients with different clinical forms to define muscle pathological patterns and correlate them with clinical course and genotype. Three groups were identified according to clinical severity. Group 1 (n = 5) comprises severe/lethal NM and biopsy in the first days of life. Group 2 (n = 4) includes intermediate NM and biopsy in infancy. Group 3 (n = 5) comprises typical/mild NM and biopsy in childhood or early adult life. Biopsies underwent histoenzymological, immunohistochemical and ultrastructural analysis. Fibre type distribution patterns, rod characteristics, distribution and localization were investigated. Contractile performance was studied in muscle fibre preparations isolated from seven muscle biopsies from each of the three groups. G1 showed significant myofibrillar dissociation and smallness with scattered globular rods in one third of fibres; there was no type 1 predominance. G2 presented milder sarcomeric dissociation, dispersed or clustered nemaline bodies, and type 1 predominance/uniformity. In contrast, G3 had well-delimited clusters of subsarcolemmal elongated rods and type 1 uniformity without sarcomeric alterations. In accordance with the clinical and morphological data, functional studies revealed markedly low forces in muscle bundles from G1 and a better contractile performance in muscle bundles from biopsies of patients from G2, and G3.In conclusion NEB-mutated NM patients present a wide spectrum of morphological features. It is difficult to establish firm genotype phenotype correlation. Interestingly, there was a correlation between clinical severity on the one hand and the degree of sarcomeric dissociation and contractility efficiency on the other. By contrast the percentage of fibres occupied by rods, as well as the quantity and the sub sarcolemmal position of rods, appears to inversely correlate with severity. Based on our observations, we propose myofibrillar dissociation and changes in contractility as an important cause of muscle weakness in NEB-mutated NM patients.


European Journal of Human Genetics | 2013

Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome

Olga S. Koutsopoulos; Christine Kretz; Claudia M Weller; Aurélien Roux; Halina Mojzisova; Johann Böhm; Catherine Koch; Anne Toussaint; Emilie Heckel; Daphne Stemkens; Simone A J ter Horst; Christelle Thibault; Muriel Koch; Syed Q Mehdi; Emilia K. Bijlsma; Jean-Louis Mandel; Julien Vermot; Jocelyn Laporte

Heterozygous mutations in dynamin 2 (DNM2) have been linked to dominant Charcot-Marie-Tooth neuropathy and centronuclear myopathy. We report the first homozygous mutation in the DNM2 protein p.Phe379Val, in three consanguineous patients with a lethal congenital syndrome associating akinesia, joint contractures, hypotonia, skeletal abnormalities, and brain and retinal hemorrhages. In vitro membrane tubulation, trafficking and GTPase assays are consistent with an impact of the DNM2p.Phe379Val mutation on endocytosis. Although DNM2 has been previously implicated in axonal and muscle maintenance, the clinical manifestation in our patients taken together with our expression analysis profile during mouse embryogenesis and knockdown approaches in zebrafish resulting in defects in muscle organization and angiogenesis support a pleiotropic role for DNM2 during fetal development in vertebrates and humans.


Journal of neuromuscular diseases | 2015

A Premature Stop Codon in MYO18B is Associated with Severe Nemaline Myopathy with Cardiomyopathy

Edoardo Malfatti; Johann Böhm; Emmanuelle Lacène; Maud Beuvin; Guy Brochier; Norma B. Romero; Jocelyn Laporte

Abstract Background: Nemaline myopathies (NM) are rare and severe muscle diseases characterized by the presence of nemaline bodies (rods) in muscle fibers. Although ten genes have been implicated in the etiology of NM, an important number of patients remain without a molecular diagnosis. Objective: Here we describe the clinical and histopathological features of a sporadic case presenting with severe NM and cardiomyopathy. Using exome sequencing, we aimed to identify the causative gene. Results: We identified a homozygous nonsense mutation in the last exon of MYO18B, leading to a truncated protein lacking the most C-terminal part. MYO18B codes for an unconventional myosin protein and it is mainly expressed in skeletal and cardiac muscles, two tissues severely affected in the patient. We showed that the mutation does not impact on mRNA stability. Immunostaining and Western blot confirmed the absence of the full-length protein. Conclusion: We propose MYO18B as a novel gene associated with nemaline myopathy and cardiomyopathy.

Collaboration


Dive into the Johann Böhm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Laporte

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Koch

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Nasim Vasli

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge