Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johann G. Danzl is active.

Publication


Featured researches published by Johann G. Danzl.


Nature | 2006

Evidence for Efimov quantum states in an ultracold gas of caesium atoms.

T. Kraemer; M. Mark; P. Waldburger; Johann G. Danzl; Cheng Chin; B. Engeser; A. D. Lange; K. Pilch; A. Jaakkola; Hanns-Christoph Nägerl; R. Grimm

Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimovs problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.


Science | 2008

Quantum Gas of Deeply Bound Ground State Molecules

Johann G. Danzl; Elmar Haller; Mattias Gustavsson; Manfred J. Mark; Russell Hart; Nadia Bouloufa; Olivier Dulieu; Helmut Ritsch; Hanns-Christoph Nägerl

Molecular cooling techniques face the hurdle of dissipating translational as well as internal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80% efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular sample is not heated during the transfer. Our results show that the preparation of a quantum gas of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground state is within reach.


Nature Physics | 2010

An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice

Johann G. Danzl; Manfred J. Mark; Elmar Haller; Mattias Gustavsson; Russell Hart; Jesus Aldegunde; Jeremy M. Hutson; Hanns-Christoph Nägerl

Control over all internal and external degrees of freedom of molecules at the level of single quantum states will enable a series of fundamental studies in physics and chemistry(1,2). In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate new quantum-gas studies(3) and future applications in quantum information science(4). However, high phase-space densities for molecular samples are not readily attainable because efficient cooling techniques such as laser cooling are lacking. Here we produce an ultracold and dense sample of molecules in a single hyperfine level of the rovibronic ground state with each molecule individually trapped in the motional ground state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state(5) with optimized double-site occupancy(6), weakly bound dimer molecules are efficiently associated on a Feshbach resonance(7) and subsequently transferred to the rovibronic ground state by a stimulated four-photon process with >50% efficiency. The molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a crucial step towards Bose-Einstein condensation of ground-state molecules and, when suitably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas phases in optical lattices(8-10).


Science | 2009

Realization of an Excited, Strongly Correlated Quantum Gas Phase

Elmar Haller; Mattias Gustavsson; Manfred J. Mark; Johann G. Danzl; Russell Hart; Guido Pupillo; Hanns-Christoph Nägerl

Stability Through Confinement With the ability to vary experimental parameters—including particle density, geometry, interaction strength, and sign—cold atoms trapped in optical lattices are ideal test systems to probe many-body quantum physics. However, due to dissipation processes most of the scenarios studied to date have necessarily looked at ground state phases. Haller et al. (p. 1224) describe a technique in which confinement of the atoms to low dimensions, using a confinement-induced resonance, can stabilize excited states with tunable interactions. The ability to create these metastable states will allow a much wider range of quantum systems to be explored. Confinement of a cloud of ultracold atoms along one dimension creates tunable metastable excited states. Ultracold atomic physics offers myriad possibilities to study strongly correlated many-body systems in lower dimensions. Typically, only ground-state phases are accessible. Using a tunable quantum gas of bosonic cesium atoms, we realized and controlled in one-dimensional geometry a highly excited quantum phase that is stabilized in the presence of attractive interactions by maintaining and strengthening quantum correlations across a confinement-induced resonance. We diagnosed the crossover from repulsive to attractive interactions in terms of the stiffness and energy of the system. Our results open up the experimental study of metastable, excited, many-body phases with strong correlations and their dynamical properties.


Physical Review Letters | 2008

Control of Interaction-Induced Dephasing of Bloch Oscillations

Mattias Gustavsson; Elmar Haller; Manfred J. Mark; Johann G. Danzl; G. Rojas-Kopeinig; Hanns-Christoph Nägerl

We report on the control of interaction-induced dephasing of Bloch oscillations for an atomic Bose-Einstein condensate in an optical lattice. We quantify the dephasing in terms of the width of the quasimomentum distribution and measure its dependence on time for different interaction strengths which we control by means of a Feshbach resonance. For minimal interaction, the dephasing time is increased from a few to more than 20 thousand Bloch oscillation periods, allowing us to realize a BEC-based atom interferometer in the noninteracting limit.


Angewandte Chemie | 2016

Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells.

Alexey N. Butkevich; Gyuzel Yu. Mitronova; Sven C. Sidenstein; Jessica L. Klocke; Dirk Kamin; Dirk N. H. Meineke; Elisa D'Este; Philip Tobias Kraemer; Johann G. Danzl; Vladimir N. Belov; Stefan W. Hell

Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm.


Physical Review Letters | 2010

Confinement-induced resonances in low-dimensional quantum systems

Elmar Haller; Manfred J. Mark; Russell Hart; Johann G. Danzl; Vladimir S. Melezhik; Peter Schmelcher; Hanns-Christoph Nägerl

We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists.


Nature | 2010

Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

Elmar Haller; Russell Hart; Manfred J. Mark; Johann G. Danzl; Mattias Gustavsson; Marcello Dalmonte; Guido Pupillo; Hanns-Christoph Nägerl

Quantum many-body systems can have phase transitions even at zero temperature; fluctuations arising from Heisenberg’s uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the system’s Hamiltonian changes across a finite critical value. A well-known example is the Mott–Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effect—the sine–Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulator—in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sine–Gordon model. We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Bose–Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.


Scientific Reports | 2016

Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses.

Sven C. Sidenstein; Elisa D’Este; Marvin J. Böhm; Johann G. Danzl; Vladimir N. Belov; Stefan W. Hell

Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels (“multilevelSTED”) optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to ~35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications.


Physical Review Letters | 2011

Precision measurements on a tunable Mott insulator of ultracold atoms.

Manfred J. Mark; Elmar Haller; Katharina Lauber; Johann G. Danzl; Andrew J. Daley; Hanns-Christoph Nägerl

We perform precision measurements on a Mott-insulator quantum state of ultracold atoms with tunable interactions. We probe the dependence of the superfluid-to-Mott-insulator transition on the interaction strength and explore the limits of the standard Bose-Hubbard model description. By tuning the on-site interaction energies to values comparable to the interband separation, we are able to quantitatively measure number-dependent shifts in the excitation spectrum caused by effective multibody interactions.

Collaboration


Dive into the Johann G. Danzl's collaboration.

Top Co-Authors

Avatar

Elmar Haller

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell Hart

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Mark

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge