Johann Mertens
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johann Mertens.
Nature Nanotechnology | 2008
Johann Mertens; Celia Rogero; Montserrat Calleja; Daniel Ramos; José A. Martín-Gago; Carlos Briones; Javier Tamayo
The properties of water at the nanoscale are crucial in many areas of biology, but the confinement of water molecules in sub-nanometre channels in biological systems has received relatively little attention. Advances in nanotechnology make it possible to explore the role played by water molecules in living systems, potentially leading to the development of ultrasensitive biosensors. Here we show that the adsorption of water by a self-assembled monolayer of single-stranded DNA on a silicon microcantilever can be detected by measuring how the tension in the monolayer changes as a result of hydration. Our approach relies on the microcantilever bending by an amount that depends on the tension in the monolayer. In particular, we find that the tension changes dramatically when the monolayer interacts with either complementary or single mismatched single-stranded DNA targets. Our results suggest that the tension is mainly governed by hydration forces in the channels between the DNA molecules and could lead to the development of a label-free DNA biosensor that can detect single mutations. The technique provides sensitivity in the femtomolar range that is at least two orders of magnitude better than that obtained previously with label-free nanomechanical biosensors and with label-dependent microarrays.
Journal of Applied Physics | 2006
Daniel Ramos; Javier Tamayo; Johann Mertens; Montserrat Calleja; A. Zaballos
Resonant microcantilevers are being actively investigated as sensitive mass sensors for biological detection. By performing experiments of adsorption of the bacteria Escherichia coli on singly clamped microcantilevers, we demonstrate that the effect of the added mass is not the only and may not be the main origin of the response of these sensors. The experiments show that the magnitude and sign of resonance frequency shift both depend critically on the distribution of the adsorbed bacterial cells on the cantilever. We relate this behavior to the added mass that shifts the resonance to lower frequencies and the higher effective flexural rigidity of the cantilever due to the bacteria stiffness that shifts the resonance to higher frequencies. Both effects can be uncoupled by positioning the cells where each effect dominates, near the free cantilever end for measuring the added mass or near the clamping for measuring the increase of flexural rigidity.
Journal of Applied Physics | 2006
Daniel Ramos; Javier Tamayo; Johann Mertens; Montserrat Calleja
We report the selective excitation of the flexural modes of microcantilevers in aqueous solutions, by applying the photothermal excitation technique. The experiments show that a particular vibration mode can be efficiently excited by focusing the intensity-modulated laser beam on regions of high curvature of the vibration shape. In addition, the resulting resonant peaks in liquid appear distorted by an amplitude component that decreases with the frequency. This distortion produces a shift of the resonance to lower frequencies. A theoretical model based on the transformation of optical energy into mechanical energy via an intermediate thermal stage is proposed to interpret the experimental results. The theory shows that the driven oscillation of the cantilever depends on the curvature of the eigenmode at the excitation position and the heating induced by the excitation laser, which decreases with the frequency. The results reported here set the basis for efficient excitation of high vibration modes in liqu...
Nanotechnology | 2008
Daniel Ramos; Javier Tamayo; Johann Mertens; Montserrat Calleja; Luis Guillermo Villanueva; A. Zaballos
We have measured the effect of bacteria adsorption on the resonant frequency of microcantilevers as a function of the adsorption position and vibration mode. The resonant frequencies were measured from the Brownian fluctuations of the cantilever tip. We found that the sign and amount of the resonant frequency change is determined by the position and extent of the adsorption on the cantilever with regard to the shape of the vibration mode. To explain these results, a theoretical one-dimensional model is proposed. We obtain analytical expressions for the resonant frequency that accurately fit the data obtained by the finite element method. More importantly, the theory data shows a good agreement with the experiments. Our results indicate that there exist two opposite mechanisms that can produce a significant resonant frequency shift: the stiffness and the mass of the bacterial cells. Based on the thermomechanical noise, we analyse the regions of the cantilever of lowest and highest sensitivity to the attachment of bacteria. The combination of high vibration modes and the confinement of the adsorption to defined regions of the cantilever allows the detection of single bacterial cells by only measuring the Brownian fluctuations. This study can be extended to smaller cantilevers and other biological systems such as proteins and nucleic acids.
Sensors | 2007
Daniel Ramos; Johann Mertens; Montserrat Calleja; Javier Tamayo
An analytical model for predicting the deflection and force of a bimaterial cantilever is presented. We introduce the clamping effect characterised by an axial load upon temperature changes. This new approach predicts a non linear thermal dependence of cantilever strain. A profilometry technique was used to measure the thermal strain. Comparison with experimental results is used to verify the model. The concordance of the analytical model presented with experimental measurements is better than 10%..
Applied Physics Letters | 2008
Daniel Ramos; Johann Mertens; Montserrat Calleja; Javier Tamayo
We report the use of the photothermal actuation for the self-excitation of a selected vibration mode of a microcantilever in liquid. The gain of the positive feedback loop is adjusted in order to obtain a negative effective damping. In this regime, the amplitude noise is squeezed due to the nonlinear saturation of the system and the phase noise is largely reduced. The microcantilever vibration achieved a frequency stability of the order of 1ppm for a bandwidth of 1Hz. This is at least two orders of magnitude better than previous measurements in liquids. The obtained sensitivity is applied for detecting in real time the change of the fluid properties when glycerol is added to water at a concentration of 1% (m∕m).
Journal of Applied Physics | 2007
Johann Mertens; Montserrat Calleja; Daniel Ramos; A. Tarýn; Javier Tamayo
In this study, we have determined the relationship between the nanostructure of the gold film deposited on microcantilevers and the sensitivity and reproducibility of their static response to molecular adsorption. In order to tune the properties of the gold film, gold was deposited at different rates and thicknesses. The cantilever response to molecular adsorption was characterized by exposure of the cantilevers to mercaptohexanol in water. The morphology of the gold surface was characterized by atomic force microscopy, and the residual stress induced in the cantilevers was characterized by a profilometry technique based on the optical beam deflection method. We have found that the discontinuous morphology of the gold film for small thicknesses and low deposition rates gives rise to large values of residual tensile stress due to the formation of grain boundaries at the expense of strain energy. These cantilevers exhibit the highest sensitivity and reproducibility to molecular adsorption. However, larger t...
Sensors | 2007
Daniel Ramos; Montserrat Calleja; Johann Mertens; Ángel Zaballos; Javier Tamayo
When microcantilevers are used in the dynamic mode, the resonance shift upon material adsorption depends on the position of the adsorbate along the microcantilever. We have previously described that the adsorbate stiffness needs to be considered in addition to its mass in order to correctly interpret the resonance shift. Here we describe a method that allows obtaining the Youngs modulus of the adsorbed bacteria derived from the measurement of the frequency shift when adsorbates are placed close to the clamping region. As a model system we have used E. Coli bacteria deposited on the cantilever surface by the ink-jet technique. We demonstrate that the correct information about adsorbed mass can be extracted by recording the cantilever profile and its resonance response. Also, the position and extent of adsorbates is determined by recording the microcantilever profile. We use a theoretical model based on the Euler – Bernouilli equation for a beam with both mass and flexural rigidity local increase due to the deposited material.
Scientific Reports | 2015
Johann Mertens; Santiago Casado; Carlos P. Mata; Mercedes Hernando-Pérez; Pedro J. de Pablo; José L. Carrascosa; José R. Castón
Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms.
Journal of Applied Physics | 2011
Priscila M. Kosaka; Javier Tamayo; Eduardo Gil-Santos; Johann Mertens; Valerio Pini; N. F. Martínez; Oscar Ahumada; Montserrat Calleja
We present an optical microscopy technique based on the scanning of a laser beam across the surface of a sample and the measurement of the deflection of the reflected laser beam in two dimensions. The technique is intended for characterization of nanomechanical systems. It provides the height of a nanomechanical system with sub-nanometer vertical resolution. In addition, it simultaneously provides a complete map of the resonant properties. We demonstrate the capability of the technique by analyzing the residual stress and vibration mode shape of a system consisting of two elastically coupled nanocantilevers. The technique is simple, allows imaging in air, vacuum and liquids, and it is unique in providing synchronized information of the static and dynamic out-of-plane displacement of nanomechanical systems.