Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johann Urschitz is active.

Publication


Featured researches published by Johann Urschitz.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Helper-independent piggyBac plasmids for gene delivery approaches: Strategies for avoiding potential genotoxic effects

Johann Urschitz; Miyuri Kawasumi; Jesse B. Owens; Kazuto Morozumi; Hideaki Yamashiro; Ilko Stoytchev; Joel Marh; James A. Dee; Kris Kawamoto; Craig J. Coates; Joseph M. Kaminski; Pawel Pelczar; Ryuzo Yanagimachi; Stefan Moisyadi

Efficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting factors and of concern. Recently, several groups have used transposon-based approaches to deliver genes to a variety of cells. The piggyBac (pB) transposase in particular has been shown to be well suited for cell transfection and gene therapy approaches because of its flexibility for molecular modification, large cargo capacity, and high transposition activity. However, safety considerations regarding transposase gene insertions into host genomes have rarely been addressed. Here we report our results on engineering helper-independent pB plasmids. The single-plasmid gene delivery system carries both the piggyBac transposase (pBt) expression cassette as well as the transposon cargo flanked by terminal repeat element sequences. Improvements to the helper-independent structure were achieved by developing new plasmids in which the pBt gene is rendered inactive after excision of the transposon from the plasmid. As a consequence, potentially negative effects that may develop by the persistence of an active pBt gene posttransposition are eliminated. The results presented herein demonstrate that our helper-independent plasmids represent an important step in the development of safe and efficient gene delivery methods that should prove valuable in gene therapy and transgenic approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis

Joel Marh; Zoia Stoytcheva; Johann Urschitz; Atsushi Sugawara; Hideaki Yamashiro; Jesse B. Owens; Ilko Stoytchev; Pawel Pelczar; Ryuzo Yanagimachi; Stefan Moisyadi

We have developed a unique method for mouse transgenesis. The transposase-enhanced pronuclear microinjection (PNI) technique described herein uses the hyperactive piggyBac transposase to insert a large transgene into the mouse genome. This procedure increased transgene integration efficiency by fivefold compared with conventional PNI or intracytoplasmic sperm injection-mediated transgenesis. Our data indicate that the transposase-enhanced PNI technique additionally requires fewer embryos to be microinjected than traditional methods to obtain transgenic animals. This transposase-mediated approach is also very efficient for single-cell embryo cytoplasmic injections, offering an easy-to-implement transgenesis method to the scientific community.


Nucleic Acids Research | 2012

Chimeric piggyBac transposases for genomic targeting in human cells

Jesse B. Owens; Johann Urschitz; Ilko Stoytchev; Nong C. Dang; Zoia Stoytcheva; Mahdi Belcaid; Kommineni J. Maragathavally; Craig J. Coates; David J. Segal; Stefan Moisyadi

Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4–PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structure–function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination

Liang Zhao; Ee Ting Ng; Tara-Lynne Davidson; Enya Longmuss; Johann Urschitz; Marlee Elston; Stefan Moisyadi; Josephine Bowles; Peter Koopman

Significance The sex-determining factor SRY is thought to function by up-regulating expression of its key target gene SRY-box 9 (SOX9) in pre-Sertoli cells of the developing gonads, but evidence for a transactivation domain is lacking for human SRY and is limited to in vitro evidence for mouse Sry. The latter is unusual in possessing a polyglutamine tract at its C terminus. We demonstrate, using a combination of biochemical, cell-based, and transgenic mouse assays, that this domain plays essential roles in both protein stabilization and transactivation of Sox9, and is required for male sex determination in mice. Our data indicate that mouse Sry has evolved a novel bifunctional module, revealing an unexpected level of plasticity of sex-determining mechanisms even among mammals. The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry’s ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.


Biology of Reproduction | 2014

Generation of Transgenic Pigs by Cytoplasmic Injection of piggyBac Transposase Based pmGENIE-3 Plasmids

Zicong Li; Fang Zeng; Fanming Meng; Zhiqian Xu; Xianwei Zhang; Xiaoling Huang; Fei Tang; Wenchao Gao; Junsong Shi; Xiaoyan He; Dewu Liu; Chong Wang; Johann Urschitz; Stefan Moisyadi; Zhenfang Wu

ABSTRACT The process of transgenesis involves the introduction of a foreign gene, the transgene, into the genome of an animal. Gene transfer by pronuclear microinjection (PNI) is the predominant method used to produce transgenic animals. However, this technique does not always result in germline transgenic offspring and has a low success rate for livestock. Alternate approaches, such as somatic cell nuclear transfer using transgenic fibroblasts, do not show an increase in efficiency compared to PNI, while viral-based transgenesis is hampered by issues regarding transgene size and biosafety considerations. We have recently described highly successful transgenesis experiments with mice using a piggyBac transposase-based vector, pmhyGENIE-3. This construct, a single and self-inactivating plasmid, contains all the transpositional elements necessary for successful gene transfer. In this series of experiments, our laboratories have implemented cytoplasmic injection (CTI) of pmGENIE-3 for transgene delivery into in vivo-fertilized pig zygotes. More than 8.00% of the injected embryos developed into transgenic animals containing monogenic and often single transgenes in their genome. However, the CTI technique was unsuccessful during the injection of in vitro-fertilized pig zygotes. In summary, here we have described a method that is not only easy to implement, but also demonstrated the highest efficiency rate for nonviral livestock transgenesis.


Ultrasound in Medicine and Biology | 2013

Ultrasound directs a transposase system for durable hepatic gene delivery in mice.

Cynthia D. Anderson; Johann Urschitz; Mark T. Khemmani; Jesse B. Owens; Stefan Moisyadi; Ralph V. Shohet; Chad B. Walton

Our aim was to evaluate the delivery of transposase-based vectors by ultrasound targeted microbubble destruction (UTMD) in mice. DNA vectors were attached to cationic lipid microbubbles (1-3 μm in diameter), injected intravenously and delivered to the liver by destruction of the carrier bubbles with ultrasound in burst mode at 1.0 MHz, 20-μs pulse duration, 10-Hz pulse repetition frequency and ∼1.3-MPa acoustic peak negative pressure. We evaluated the expression and genomic integration of conventional (pcDNA3) and piggyBac transposase-based (pmGENIE) reporter vectors. In vivo, we observed UTMD-mediated liver-specific expression of pmGENIE for an average of 24 d, compared with 4 d with pcDNA3. Reporter expression was located predominately near blood vessels initially, whereas expression after 3 d was more evenly distributed through the parenchyma of the liver. We confirmed random genomic integration for pmGENIE in vitro; however, integration events for pmGENIE in vivo were targeted to specific areas of chromosome 14. Our results suggest that a combination of UTMD and non-viral DNA transposase vectors can mediate weeks of hepatic-specific gene transfer in vivo, and analyses performed by non-restrictive linear amplification-mediated (nrLAM) polymerase chain reaction, cloning and sequencing identify an unexpected tropism for integration within a specific sequence on chromosome 14 in mice. UTMD delivery of transgenes may be useful for the treatment of hepatic gene deficiency disorders.


Gastrointestinal Endoscopy | 2013

Transpositional transgenesis with piggyBac

Johann Urschitz; Stefan Moisyadi

Transposons are mobile genetic elements that are capable of self-directed excision and subsequent reintegration within the host genome. Transposase such as piggyBac, Sleeping Beauty and Tol2 catalyze these reactions and have shown potential as tools for the stable integration of transgenes when used in the binary plasmid mode. Recent modifications to the transposase and/or the terminal repeats of the transposon have increased their integration efficiency and/or specificity. We recently described the development of a piggyBac transposase system, the helper independent, single construct self-inactivating plasmid called GENIE. Here we describe the structure, safety and function of these transpositional vectors and their use in animal transgenesis and cell transfection.


Vaccine | 2014

Vaccination with a piggyBac plasmid with transgene integration potential leads to sustained antigen expression and CD8(+) T cell responses.

Pietro Bertino; Johann Urschitz; FuKun W. Hoffmann; Bo Ra You; Aaron H. Rose; Woo Hyun Park; Stefan Moisyadi; Peter R. Hoffmann

DNA vaccination with plasmid has conventionally involved vectors designed for transient expression of antigens in injected tissues. Next generation plasmids are being developed for site-directed integration of transgenes into safe sites in host genomes and may provide an innovative approach for stable and sustained expression of antigens for vaccination. The goal of this study was to evaluate in vivo antigen expression and the generation of cell mediated immunity in mice injected with a non-integrating plasmid compared to a plasmid with integrating potential. Hyperactive piggyBac transposase-based integrating vectors (pmhyGENIE-3) contained a transgene encoding either eGFP (pmhyGENIE-3-eGFP) or luciferase (pmhyGENIE-3-GL3), and were compared to transposase-deficient plasmids with the same transgene and DNA backbone. Both non-integrating and integrating plasmids were equivalent at day 1 for protein expression at the site of injection. While protein expression from the non-integrating plasmid was lost by day 14, the pmhyGENIE-3 was found to exhibit sustained protein expression up to 28 days post-injection. Vaccination with pmhyGENIE-3-eGFP resulted in a robust CD8(+) T cell response that was three-fold higher than that of non-integrating plasmid vaccinations. Additionally we observed in splenocyte restimulation experiments that only the vaccination with pmhyGENIE-3-eGFP was characterized by IFNγ producing CD8(+) T cells. Overall, these findings suggest that plasmids designed to direct integration of transgenes into the host genome are a promising approach for designing DNA vaccines. Robust cell mediated CD8(+) T cell responses generated using integrating plasmids may provide effective, sustained protection against intracellular pathogens or tumor antigens.


Antioxidants | 2017

Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate

Gregory J. Fredericks; FuKun W. Hoffmann; Robert J. Hondal; Sharon Rozovsky; Johann Urschitz; Peter Hoffmann

Selenoprotein K (SELENOK) is a selenocysteine (Sec)-containing protein localized in the endoplasmic reticulum (ER) membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids) enzyme to promote protein acyl transferase (PAT) reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys) residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50%) under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92), we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur.


Oncogene | 2014

Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest-derived cell line.

John C. DeWitt; Vanessa Ochoa; Johann Urschitz; Marlee Elston; Stefan Moisyadi; Rae Nishi

Neuroblastoma arises from sympathoadrenal progenitors of the neural crest and expression of the neurotrophin receptor TrkB and its ligand, brain-derived neurotrophic factor (BDNF), is correlated with poor prognosis. Although activated TrkB signaling promotes a more aggressive phenotype in established neuroblastoma cell lines, whether TrkB signaling is sufficient to transform neural crest-derived cells has not been investigated. To address the role of TrkB signaling in malignant transformation, we removed two immunoglobulin-like domains from the extracellular domain of the full-length rat TrkB receptor to create a ΔIgTrkB that is constitutively active. In the pheochromocytoma-derived cell line PC12, ΔIgTrkB promotes differentiation by stimulating process outgrowth; however, in the rat neural crest-derived cell line NCM-1, ΔIgTrkB signaling produces a markedly transformed phenotype characterized by increased proliferation, anchorage-independent cell growth, anoikis resistance and matrix invasion. Furthermore, expression of ΔIgTrkB leads to the upregulation of many transcripts encoding cancer-associated genes including cyclind1, twist1 and hgf, as well as downregulation of tumor suppressors such as pten and rb1. In addition, ΔIgTrkB NCM-1 cells show a 21-fold increase in mRNA for MYCN, the most common genetic marker for a poor prognosis in neuroblastoma. When injected into NOD SCID mice, control GFP NCM-1 cells fail to grow whereas ΔIgTrkB NCM-1 cells form rapidly growing and invasive tumors necessitating euthanasia of all mice by 15 days post injection. In summary, these results indicate that activated TrkB signaling is sufficient to promote the formation of a highly malignant phenotype in neural crest-derived cells.

Collaboration


Dive into the Johann Urschitz's collaboration.

Top Co-Authors

Avatar

Stefan Moisyadi

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Dewu Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fang Zeng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhenfang Wu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zicong Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jesse B. Owens

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Marlee Elston

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Wenchao Gao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

FuKun W. Hoffmann

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Ilko Stoytchev

University of Hawaii at Manoa

View shared research outputs
Researchain Logo
Decentralizing Knowledge