Johanna Buschmann
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johanna Buschmann.
Injury-international Journal of The Care of The Injured | 2012
Johanna Buschmann; Luc Härter; Shuping Gao; Sonja Hemmi; Manfred Welti; Nora Hild; Oliver Schneider; Wendelin J. Stark; Nicole Lindenblatt; Clément M. L. Werner; Guido A. Wanner; Maurizio Calcagni
For tissue engineering of critical size bone grafts, nanocomposites are getting more and more attractive due to their controllable physical and biological properties. We report in vitro and in vivo behaviour of an electrospun nanocomposite based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) seeded with human adipose-derived stem cells (ASC) compared to PLGA. Major findings were that cell attachment, three-dimensional ingrowth and proliferation were very good on both materials. Cell morphology changed from a spindle-shaped fibroblast-like form to a more roundish type when ASC were seeded on PLGA, while they retained their morphology on PLGA/a-CaP. Moreover, we found ASC differentiation to a phenotype committed towards osteogenesis when a-CaP nanoparticles were suspended in normal culture medium without any osteogenic supplements, which renders a-CaP nanoparticles an interesting osteoinductive component for the synthesis of other nanocomposites than PLGA/a-CaP. Finally, electrospun PLGA/a-CaP scaffold architecture is suitable for a rapid and homogenous vascularisation confirmed by a complete penetration by avian vessels from the chick chorioallantoic membrane (CAM) within one week.
Cytotherapy | 2013
Johanna Buschmann; Shuping Gao; Luc Härter; Sonja Hemmi; Manfred Welti; Clément M. L. Werner; Maurizio Calcagni; Paolo Cinelli; Guido A. Wanner
BACKGROUND AIMS Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cells ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. METHODS The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. RESULTS Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. CONCLUSIONS The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate.
Journal of Tissue Engineering and Regenerative Medicine | 2013
Johanna Buschmann; Gabriella Meier-Bürgisser; Eliana Bonavoglia; Peter Neuenschwander; Vincent Milleret; Pietro Giovanoli; Maurizio Calcagni
In tendon rupture repair, improvements such as higher primary repair strength, anti‐adhesion and accelerated healing are needed. We developed a potential carrier system of an electrospun DegraPol® tube, which was tightly implanted around a transected and conventionally sutured rabbit Achilles tendon. Histomorphometric analysis of the tendon tissue 12 weeks postoperation showed that the tenocyte density, tenocyte morphology and number of inflammation zones were statistically equivalent, whether or not DegraPol tube was implanted; only the collagen fibres were slightly less parallelly orientated in the tube‐treated case. Comparison of rabbits that were operated on both hind legs with ones that were operated on only one hind leg showed that there were significantly more inflammation zones in the two‐leg cases compared to the one‐leg cases, while the implantation of a DegraPol tube had no such adverse effects. These findings are a prerequisite for using DegraPol tube as a carrier system for growth factors, cytokines or stem cells in order to accelerate the healing process of tendon tissue. Copyright
Injury-international Journal of The Care of The Injured | 2014
Shuping Gao; Maurizio Calcagni; Manfred Welti; Sonja Hemmi; Nora Hild; Wendelin J. Stark; Gabriella Meier Bürgisser; Guido A. Wanner; Paolo Cinelli; Johanna Buschmann
BACKGROUND Fractures with a critical size bone defect are associated with high rates of delayed- and non-union. The treatment of such complications remains a serious issue in orthopaedic surgery. Adipose derived stem cells (ASCs) combined with biomimetic materials can potentially be used to increase fracture healing. Nevertheless, a number of requirements have to be fulfilled; in particular, the insufficient vascularisation of the bone constructs. Here, the objectives were to study the impact of ASC-derived osteoblasts on ASC-derived endothelial cells in a 3D co-culture and the effect of 40wt% of amorphous calcium phosphate nanoparticles on the proliferation and differentiation of ASC-derived endothelial cells when present in PLGA. MATERIALS AND METHODS Five primary ASC lines were differentiated towards osteoblasts (OBs) and endothelial cells (ECs) and two of them were chosen based on quantitative PCR results. Either a mono-culture of ASC-derived EC or a co-culture of ASC-derived EC with ASC-derived OB (1:1) was seeded on an electrospun nanocomposite of poly-(lactic-co-glycolic acid) and amorphous calcium phosphate nanoparticles (PLGA/a-CaP; reference: PLGA). The proliferation behaviour was determined histomorphometrically in different zones and the expression of von Willebrand Factor (vWF) was quantified. RESULTS Independently of the fat source (biologic variability), ASC-derived osteoblasts decelerated the proliferation behaviour of ASC-derived endothelial cells in the co-culture compared to the mono-culture. However, expression of vWF was clearly stronger in the co-culture, indicating further differentiation of the ASC-derived EC into the EC lineage. Moreover, the presence of a-CaP nanoparticles in the scaffold slowed the proliferation behaviour of the co-culture cells, too, going along with a further differentiation of the ASC-derived OB, when compared to pure PLGA scaffolds. CONCLUSIONS This study revealed significant findings for bone tissue-engineering. Co-cultures of ASC-derived EC and ASC-derived OB stimulate each others further differentiation. A nanocomposite with a-CaP nanoparticles offers higher mechanical stability, bioactivity and osteoconductivity compared to mere PLGA and can easily be seeded with pre-differentiated EC and OB.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Johanna Buschmann; Maurizio Calcagni; Gabriella Meier Bürgisser; Eliana Bonavoglia; Peter Neuenschwander; Vincent Milleret; Pietro Giovanoli
Tendon rupture repair is a surgical field where improvements are still required due to problems such as repeat ruptures, adhesion formation and joint stiffness. In the current study, a reversibly expandable and contractible electrospun tube based on a biocompatible and biodegradable polymer was implanted around a transected and conventionally sutured rabbit Achilles tendon. The material used was DegraPol® (DP), a polyester urethane. To make DP softer, more elastic and surgeon‐friendly, the synthesis protocol was slightly modified. Material properties of conventional and new DP film electrospun meshes are presented. At 12 weeks post‐surgery, tenocyte and tenoblast density, nuclei and width, collagen fibre structure and inflammation levels were analyzed histomorphometrically. Additionally, a comprehensive histological scoring system by Stoll et al. (2011) was used to compare healing outcomes. Results showed that there were no adverse reactions of the tendon tissue following the implant. No differences were found whether the DP tube was applied or not for both traditional and new DP materials. As a result, the new DP material was shown to be an excellent carrier for delivery of growth factors, stem cells and other agents responsible for tendon healing. Copyright
BioMed Research International | 2014
Gabriella Meier Bürgisser; Maurizio Calcagni; Angela Müller; Eliana Bonavoglia; Gion Fessel; Jess G. Snedeker; Pietro Giovanoli; Johanna Buschmann
Purpose. One of the great challenges in surgical tendon rupture repair is to minimize peritendinous adhesions. In order to reduce adhesion formation, a physical barrier was applied to a sutured rabbit Achilles tendon, with two different immobilization protocols used postoperatively. Methods. Thirty New Zealand white rabbits received a laceration on the Achilles tendon, sutured with a 4-strand Becker suture, and half of the rabbits got a DegraPol tube at the repair site. While fifteen rabbits had their treated hind leg in a 180° stretched position during 6 weeks (adhesion provoking immobilization), the other fifteen rabbits were recasted with a 150° position after 3 weeks (adhesion inhibiting immobilization). Adhesion extent was analysed macroscopically, via ultrasound and histology. Inflammation was determined histologically. Biomechanical properties were analysed. Results. Application of a DegraPol tube reduced adhesion formation by approximately 20%—independently of the immobilization protocol. Biomechanical properties of extracted specimen were not affected by the tube application. There was no serious inflammatory reaction towards the implant material. Conclusions. Implantation of a DegraPol tube tightly set around a sutured tendon acts as a beneficial physical barrier and prevents adhesion formation significantly—without affecting the tendon healing process.
Clinical Biomechanics | 2011
Johanna Buschmann; Angela Müller; Kirill Feldman; Theo A. Tervoort; Gion Fessel; Jess G. Snedeker; Pietro Giovanoli; Maurizio Calcagni
BACKGROUND For the prevention of re-rupture during early healing phase, the primary repair strength of repaired lacerated tendons in hand surgery should be maximal and the reconstructed diameter minimal. Two new repair methods (small hook thread and internal splint) were assessed for strength and reconstructed diameter characteristics. METHODS Achilles tendons of 43 female New Zealand White rabbits were sectioned 2 cm above the calcaneus. Specimens were divided into 7 groups and repaired as follows: Kirchmayr method 2-strand with 4.0 polypropylene thread; Becker method 4-strand; 6-strand; internal splint; Kirchmayr method small hook 2-strand; Becker method small hook 4-strand, non-modified tendon. Load until failure, load until gap formation, gap length, cross-sectional area and failure stress were determined. FINDINGS The small hook 2-strand suture had 1.3 fold higher loads until failure compared to a conventional 2-strand suture, P<0.05. The internal splint had a similar load until failure (22 N (SD 6)) as the conventional 2-strand suture (23 N (SD 4)); around half the load until failure of the conventional 4-strand suture (38 N (SD 9)). Load until gap formation correlated positively with load until failure (y=0.65+3.6; r(2)=0.72). The running suture increased the cross-sectional area at the repair site by a factor of 1.3. INTERPRETATION Using a small hook thread instead of a 4.0 polypropylene thread significantly increases the primary repair strength with the same number of strands. Internal splints may be an alternative to conventional 2-strand sutures for bridging large gaps.
The Annals of Thoracic Surgery | 2013
Barbara V. Erne; Wolfgang Jungraithmayr; Johanna Buschmann; Stephan Arni; Walter Weder; Ilhan Inci
BACKGROUND N-Acetylcysteine (NAC) attenuates ischemia-reperfusion injury after lung transplantation in animal models. The purpose of this study is to evaluate a protective effect of NAC against acute lung rejection. METHODS Rat single-lung transplantation was performed in four groups (n = 7 per group). In NAC groups, donors and recipients received NAC 150 mg/kg per day intraperitoneally before transplantation and recipients thereafter until euthanasia. Control groups (CON) received 0.5 mL of 0.9% saline solution intraperitoneally instead of NAC. Animals were euthanized on day 1 (CON1, NAC1) or day 5 (CON5, NAC5) after transplantation. Lung tissue was assessed by histology, immunohistochemistry for CD68+/CD163+ macrophages and CD3+ T cells, immunofluorescence for interleukin 4 and interleukin 12, concentration of reduced glutathione, and activated nuclear factor-kappa B. RESULTS CD68+ macrophages in CON5 accumulated significantly compared with NAC5 grafts (p < 0.001). No significant difference was observed for CD163+ macrophages on day 5. T cells were significantly more frequent in NAC1 (p < 0.001), but significantly less in NAC5 (p < 0.001) compared with control groups, respectively. Interleukin 4 and interleukin 12 expression did not differ between groups. Treatment with NAC significantly influenced glutathione levels (p = 0.019) and reduced nuclear factor-kappa B activation (p = 0.034) in transplanted lungs. CONCLUSIONS N-Acetylcysteine has the potential to attenuate acute pulmonary rejection by reduction of macrophage and T-cell infiltration, which is intimately linked to a reduced action of the nuclear factor-kappa B proinflammatory signaling pathway. In view of these observations, NAC should be considered a promising substance that could play a role in strategies for the prevention of acute rejection.
Frontiers in Physiology | 2016
Anna Woloszyk; Johanna Buschmann; Conny Waschkies; Bernd Stadlinger; Thimios A. Mitsiadis
Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.
Macromolecular Bioscience | 2016
Olivera Evrova; Joanna Houska; Manfred Welti; Eliana Bonavoglia; Maurizio Calcagni; Pietro Giovanoli; Viola Vogel; Johanna Buschmann
Healing of tendon ruptures represents a major challenge in musculoskeletal injuries and combinations of biomaterials with biological factors are suggested as viable option for improved healing. The standard approach of repair by conventional suture leads to incomplete healing or rerupture. Here, a new elastic type of DegraPol® (DP), a polyester urethane, is explored as a delivery device for platelet-derived growth factor-BB (PDGF-BB) to promote tendon healing. Using emulsion electrospinning as an easy method for incorporation of biomolecules within polymers, DegraPol® supports loading and release of PDGF-BB. Morphological, mechanical and delivery device properties of the bioactive DP scaffolds, as well as differences arising due to different electrospinning parameters are studied. Emulsion electrospun DP scaffolds result in thinner fibers than pure DP scaffolds and experience decreased strain at break [%], but high enough for successful surgeon handling. PDGF-BB is released in a sustained manner from emulsion electrospun DP, but not completely, with still large amount of it being inside the polymeric fibers after 30 d. In vitro studies show that the bioactive scaffolds promote tenocyte proliferation in serum free and serum(+) conditions, demonstrating the potential of this surgeon-friendly bioactive delivery device to be used for tendon repair.