Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Engstrand is active.

Publication


Featured researches published by Johanna Engstrand.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

The effect of composition on mechanical properties of brushite cements

Johanna Engstrand; Cecilia Persson; Håkan Engqvist

Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.


Materials Science and Engineering: C | 2013

Influence of water content on hardening and handling of a premixed calcium phosphate cement

Johanna Engstrand; Jonas Åberg; Håkan Engqvist

Handling of calcium phosphate cements is difficult, where problems often arise during mixing, transferring to syringes, and subsequent injection. Via the use of premixed cements the risk of handling complications is reduced. However, for premixed cements to work in a clinical situation the setting time needs to be improved. The objective of this study is to investigate the influence of the addition of water on the properties of premixed cement. Monetite-forming premixed cements with small amounts of added water (less than 6.8 wt.%) were prepared and the influence on injectability, working time, setting time and mechanical strength was evaluated. The results showed that the addition of small amounts of water had significant influence on the properties of the premixed cement. With the addition of just 1.7 wt.% water, the force needed to extrude the cement from a syringe was reduced from 107 (±15) N to 39 (±9) N, the compression strength was almost doubled, and the setting time decreased from 29 (±4) min to 19 (±2) min, while the working time remained 5 to 6h. This study demonstrates the importance of controlling the water content in premixed cement pastes and how water can be used to improve the properties of premixed cements.


Biomedical Materials | 2012

Polyhedral oligomeric silsesquioxane (POSS)–poly(ethylene glycol) (PEG) hybrids as injectable biomaterials

Johanna Engstrand; Alejandro López; Håkan Engqvist; Cecilia Persson

One of the major issues with the currently available injectable biomaterials for hard tissue replacement is the mismatch between their mechanical properties and those of the surrounding bone. Hybrid bone cements that combine the benefits of tough polymeric and bioactive ceramic materials could become a good alternative. In this work, polyhedral oligomeric silsesquioxane (POSS) was copolymerized with poly(ethylene glycol) (PEG) to form injectable in situ cross-linkable hybrid cements. The hybrids were characterized in terms of their mechanical, rheological, handling and in vitro bioactive properties. The results indicated that hybridization improves the mechanical and bioactive properties of POSS and PEG. The Young moduli of the hybrids were lower than those of commercial cements and more similar to those of cancellous bone. Furthermore, the strength of the hybrids was similar to that of commercial cements. Calcium deficient hydroxyapatite grew on the surface of the hybrids after 28 days in PBS, indicating bioactivity. The study showed that PEG-POSS-based hybrid materials are a promising alternative to commercial bone cements.


Journal of Materials Science: Materials in Medicine | 2013

Influence of particle size on hardening and handling of a premixed calcium phosphate cement

Jonas Åberg; Johanna Engstrand; Håkan Engqvist

Premixed calcium phosphate cements (pCPC) have been developed to circumvent problems related to mixing and transfer of cements in the operating room. In addition, by using pCPC the short working times generally associated with conventional water-mixed cements are avoided. In this work, the influence of particle size on handling and hardening characteristics of a premixed monetite cement has been assessed. The cements were evaluated with respect to their injectability, setting time and compressive strength. It was found that cements with smaller particle sizes were more difficult to inject and had higher compressive strength. Regarding setting time, no clear trend could be discerned. The addition of granules made the cements easier to inject, but setting time was prolonged and lower strengths were obtained. The main findings of this work demonstrate that particle size can be used to control handling and physical properties of premixed cements and that previous knowledge from water-based CPC, regarding effects of particle size, is not directly applicable to premixed CPC.


Biomatter | 2013

Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement.

Johanna Engstrand; Cecilia Persson; Håkan Engqvist

Premixed calcium phosphate cements can reduce handling complications that are associated with the mixing of cements in the operating room. However, to extend the clinical indication of ceramic cements their mechanical properties need to be further improved. The incorporation of a polymeric material with intrinsically high tensile properties could possibly assist in increasing the mechanical properties of calcium phosphate cement. In this study polymer microparticles made from poly(lactid-co-glycolide) plasticised with poly(ethylene glycol) 400 (PLGA/PEG microparticles) were added in amounts of up to 5 wt% to a premixed acidic calcium phosphate cement. The PLGA/PEG microparticles added undergo a shape transformation at 37 °C, which could give a better integration between polymer microparticles and ceramic cement compared with polymer microparticles lacking this property. The results showed that the incorporation of 1.25 wt% PLGA/PEG microparticles increased the compressive strength by approximately 20% up to 15.1 MPa while the diametral tensile strength was kept constant. The incorporation of PLGA/PEG microparticles increased the brushite to monetite ratio after setting compared with pure ceramic cements. In conclusion, small amounts of PLGA/PEG microparticles can be incorporated into premixed acidic calcium phosphate cement and increase their mechanical properties, which could lead to increased future applications.


International Scholarly Research Notices | 2012

Hydroxyapatite Formation on a Novel Dental Cement in Human Saliva

Johanna Engstrand; Erik Unosson; Håkan Engqvist

Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to study the surface reactions occurring in human salvia on a novel dental cement. Ceramir Crown & Bridge, a bioceramic luting agent intended for permanent cementation of conventional oral prosthetics, was evaluated by immersing discs made from the cement in human saliva and phosphate buffered saline (PBS) for seven days, after which they were dried and analyzed. The analytical methods used in order to verify HA formation on the surface were grazing incidence X-ray diffraction (GI-XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results showed that HA was formed on the surfaces of samples stored in saliva as well as on samples stored in PBS. The possibility of a dental luting cement to promote natural formation of HA at the tooth interface increases the stability and durability of the system and could help prevent secondary caries.


Journal of The European Ceramic Society | 2012

Nano grain sized zirconia–silica glass ceramics for dental applications

Cecilia Persson; Erik Unosson; Ingrid Ajaxon; Johanna Engstrand; Håkan Engqvist; Wei Xia


European Cells & Materials | 2011

A dental cement capable of calcium phosphate formation on its surface during water storage

Johanna Engstrand; Erik Unosson; Håkan Engqvist


The 23rd Interdisciplinary Research Conference on Injectable Osteoarticular Biomaterials and Bone Augmentation Procedures - GRIBOI; 8-10 April 2013; Boston, MA, USA | 2013

Optimization of an acidic calcium phosphate cement with enhanced radiopacity

Johanna Engstrand; Julie Jacob; Håkan Engqvist; Cecilia Persson


9th World Biomaterials Congress, Chengdu China, June 1-5, 2012 | 2012

Bioactive hybrids based on polyhedral oligomeric silsesquioxane intended as bone fillers

Alejandro López; Johanna Engstrand; Håkan Engqvist; Cecilia Persson

Collaboration


Dive into the Johanna Engstrand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Andersson

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge