Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna G. Miquet is active.

Publication


Featured researches published by Johanna G. Miquet.


Cell Cycle | 2013

Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone.

Johanna G. Miquet; Thomas Freund; Carolina Soledad Martinez; Lorena Gonzalez; María Eugenia Díaz; Giannina P. Micucci; Elsa Zotta; Ravneet K. Boparai; Andrzej Bartke; Daniel Turyn; Ana I. Sotelo

Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.


Journal of Endocrinology | 2008

Transgenic mice overexpressing GH exhibit hepatic upregulation of GH-signaling mediators involved in cell proliferation

Johanna G. Miquet; Lorena Gonzalez; Marina N. Matos; Christina E Hansen; Audreen Louis; Andrzej Bartke; Daniel Turyn; Ana I. Sotelo

Chronically elevated levels of GH in GH-transgenic mice result in accelerated growth and increased adult body weight. We have previously described that the GH-induced JAK2/STAT5-signaling pathway is desensitized in the liver of transgenic mice overexpressing GH. However, these animals present increased circulating IGF-I levels, increased hepatic GHR expression, and liver organomegaly due to hypertrophy and hyperplasia, which frequently progress to hepatomas as the animals age, indicating that action of GH on the liver is not prevented. In the present study, we have evaluated other GH-signaling pathways that could be activated in the liver of GH-transgenic mice. Upon GH administration, normal mice showed an important increment in STAT3 phosphorylation level, but transgenic mice did not respond to acute GH stimulation. However, STAT3 was constitutively phosphorylated in transgenic mice, whereas its protein content was not increased. GH-transgenic mice showed overexpression of c-Src, accompanied by an elevation of its activity. Other signaling mediators including focal adhesion kinase, epidermal growth factor receptor, Erk, Akt, and mammalian target of rapamycin displayed elevated protein and basal phosphorylation levels in these animals. Thus, GH-overexpressing transgenic mice exhibit hepatic upregulation of signaling mediators related to cell proliferation, survival, and migration. The upregulation of these proteins may represent GH-signaling pathways that are constitutively activated in the presence of dramatically elevated GH levels throughout life. These molecular alterations could be implicated in the pathological alterations observed in the liver of GH-transgenic mice.


Journal of Endocrinology | 2010

GH modulates hepatic epidermal growth factor signaling in the mouse

Lorena Gonzalez; Ma. Eugenia Díaz; Johanna G. Miquet; Ana I. Sotelo; Diego Fernández; Fernando P. Dominici; Andrzej Bartke; Daniel Turyn

Epidermal growth factor (EGF) is a key regulator of cell survival and proliferation involved in the pathogenesis and progression of different types of cancer. The EGF receptor (EGFR) is activated by binding of the specific ligand but also by transactivation triggered by different growth factors including GH. Chronically, elevated GH levels have been associated with the progression of hepatocellular carcinoma. Considering EGF and GH involvement in cell proliferation and their signaling crosstalk, the objective of the present study was to analyze GH modulatory effects on EGF signaling in liver. For this purpose, GH receptor-knockout (GHR-KO) and GH-overexpressing transgenic mice were used. EGFR content was significantly decreased in GHR-KO mice. Consequently, EGF-induced phosphorylation of EGFR, AKT, ERK1/2, STAT3, and STAT5 was significantly decreased in these mice. In contrast, EGFR content as well as its basal tyrosine phosphorylation was increased in transgenic mice overexpressing GH. However, EGF stimulation caused similar levels of EGFR, AKT, and ERK1/2 phosphorylation in normal and transgenic mice, while EGF induction of STAT3 and STAT5 phosphorylation was inhibited in the transgenic mice. Desensitization of the STATs was related to decreased association of these proteins to the EGFR and increased association between STAT5 and the tyrosine phosphatase SH2-containing phosphatase-2. While GHR knockout is associated with diminished expression of the EGFR and a concomitant decrease in EGF signaling, GH overexpression results in EGFR overexpression with different effects depending on the signaling pathway analyzed: AKT and ERK1/2 pathways are induced by EGF, while STAT3 and STAT5 activation is heterologously desensitized.


Endocrinology | 2002

Cytokine-Inducible SH2 Protein Up-Regulation Is Associated with Desensitization of GH Signaling in GHRH-Transgenic Mice

L. González; Johanna G. Miquet; Ana I. Sotelo; Andrzej Bartke; Daniel Turyn

The effects of continuous high GH levels on GH signal transduction through the GH receptor (GHR)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) pathway as well as the desensitization of this pathway by suppressors of cytokine signaling (SOCS) were studied in transgenic mice overexpressing GHRH. In transgenic mice, hepatic GHR levels were 4.5-fold higher than in normal animals, whereas the protein contents of JAK2, STAT5a, and STAT5b did not vary. This same pattern was found for basal tyrosine phosphorylation (PY-): PY-GHR was 4.5-fold increased in transgenic mice, whereas there were no differences in PY-JAK2 and PY-STATs between normal and transgenic animals. After GH administration, tyrosine phosphorylation of GHR, JAK2, and STAT5s increased 3- to 7-fold in normal mice, but no significant changes were found in transgenic mice, indicating a decreased GH sensitivity in these animals. The content of cytokine-inducible SH2 protein, a member of the SOCS family, was 18-fold higher in GHRH-transgenic than in normal mice. Conversely, SOCS-3, present in normal mice, was hardly seen in transgenic animals, whereas SOCS-2 levels did not vary. These findings suggest that cytokine-inducible SH2 protein, significantly induced by continuously elevated GH levels, may be the SOCS protein responsible for the GH signaling desensitization in transgenic animals.


BioMed Research International | 2014

Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells

Yamila Gándola; Sebastián Ezequiel Pérez; Pablo Ezequiel Irene; Ana I. Sotelo; Johanna G. Miquet; Gerardo R. Corradi; Adriana Carlucci; Lorena Gonzalez

Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design.


Aging Cell | 2016

Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure.

Cristal M. Hill; Yimin Fang; Johanna G. Miquet; Liou Y. Sun; Michal M. Masternak; Andrzej Bartke

Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.


Growth Hormone & Igf Research | 2013

Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period.

Carolina Soledad Martinez; Verónica Gabriela Piazza; Laura D. Ratner; Marina N. Matos; Lorena Gonzalez; Susana B. Rulli; Johanna G. Miquet; Ana I. Sotelo

Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.


Growth Hormone & Igf Research | 2012

Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice

Jorge F. Giani; Johanna G. Miquet; Marina C. Muñoz; Valeria Burghi; Jorge E. Toblli; Michal M. Masternak; John J. Kopchick; Andrzej Bartke; Daniel Turyn; Fernando P. Dominici

OBJECTIVE Growth hormone (GH) resistance leads to enhanced insulin sensitivity, decreased systolic blood pressure and increased lifespan. The aim of this study was to determine if there is a shift in the balance of the renin-angiotensin system (RAS) towards the ACE2/Ang-(1-7)/Mas receptor axis in the heart and the kidney of a model of GH resistance and retarded aging, the GH receptor knockout (GHR-/-) mouse. DESIGN RAS components were evaluated in the heart and the kidney of GHR-/- and control mice by immunohistochemistry and Western blotting (n=12 for both groups). RESULTS The immunostaining of Ang-(1-7) was increased in both the heart and the kidney of GHR-/- mice. These changes were concomitant with an increased immunostaining of the Mas receptor and ACE2 in both tissues. The immunostaining of AT1 receptor was reduced in heart and kidney of GHR-/- mice while that of AT2 receptor was increased in the heart and unaltered in the kidney. Ang II, ACE and angiotensinogen levels remained unaltered in the heart and the kidney of GH resistant mice. These results were confirmed by Western blotting and correlated with a significant increase in the abundance of the endothelial nitric oxide synthase in both tissues. CONCLUSIONS The shift within the RAS towards an exacerbation of the ACE2/Ang-(1-7)/Mas receptor axis observed in GHR-/- mice could be related to a protective role in cardiac and renal function; and thus, possibly contribute to the decreased incidence of cardiovascular diseases displayed by this animal model of longevity.


Growth Hormone & Igf Research | 2010

Ames dwarf (Prop1df/Prop1df) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle

Johanna G. Miquet; Marina C. Muñoz; Jorge F. Giani; Lorena Gonzalez; Fernando P. Dominici; Andrzej Bartke; Daniel Turyn; Ana I. Sotelo

CONTEXT Growth hormone (GH) is an anabolic hormone that regulates growth and metabolism. Ames dwarf mice are natural mutants for Prop1, with impaired development of anterior pituitary and undetectable levels of circulating GH, prolactin and TSH. They constitute an endocrine model of life-long GH-deficiency. The main signaling cascades activated by GH binding to its receptor are the JAK2/STATs, PI-3K/Akt and the MAPK Erk1/2 pathways. OBJECTIVES We have previously reported that GH-induced STAT5 activation was higher in Ames dwarf mice liver compared to non-dwarf controls. The aim of this study was to evaluate the principal components of the main GH-signaling pathways under GH-deficiency in liver and skeletal muscle, another GH-target tissue. METHODS Ames dwarf mice and their non-dwarf siblings were assessed. Animals were injected i.p. with GH or saline 15min before tissue removal. Protein content and phosphorylation of signaling mediators were determined by immunoblotting of tissue solubilizates. RESULTS GH was able to induce STAT5 and STAT3 tyrosine phosphorylation in both liver and muscle, but the response was higher for Ames dwarf mice than for non-dwarf controls. When Erk1/2 activation was assessed in liver, only dwarf mice showed GH-induced phosphorylation, while in muscle no response to the hormone was found in either genotype. GH-induced Akt phosphorylation at Ser473 in liver was only detected in dwarf mice. In skeletal muscle, both normal and dwarf mice responded to a GH stimulus, although dwarf mice presented higher GH activation levels. The phosphorylation of GSK-3, a substrate of Akt, increased upon hormone stimulation only in dwarf mice in both tissues. In contrast, no differences in the phosphorylation of mTOR, another substrate of Akt, were observed after GH stimulus, either in normal or dwarf mice in liver, while we were unable to determine mTOR in muscle. Protein content of GH-receptor and of the signaling mediators studied did not vary between normal and dwarf animals in the assessed tissues. CONCLUSION These results show that several components of the main GH-signaling pathways exhibit enhanced sensitivity to the hormone in liver and muscle of Ames dwarf mice.


Journal of Endocrinology | 2014

Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH.

Marina C. Muñoz; Valeria Burghi; Johanna G. Miquet; Jorge F. Giani; Ricardo D Banegas; Jorge E. Toblli; Yimin Fang; Feiya Wang; A Bartke; Fernando P. Dominici

The renin-angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1-7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on the in vivo levels of Ang II, Ang-(1-7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7-8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1-7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1-7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1-7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1-7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.

Collaboration


Dive into the Johanna G. Miquet's collaboration.

Top Co-Authors

Avatar

Lorena Gonzalez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Andrzej Bartke

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Bartke

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Soledad Martinez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge