Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Liljestrand Rönn is active.

Publication


Featured researches published by Johanna Liljestrand Rönn.


Molecular Ecology | 2006

Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera : Bruchidae) : traits associated with stored-product pest status

Midori Tuda; Johanna Liljestrand Rönn; Sawai Buranapanichpan; N. Wasano; Göran Arnqvist

Despite the fact that many plant‐feeding insects are pests, little effort has been made to identify key evolutionary trait transitions that allow taxa to acquire or lose pest status. A large proportion of species in the genus Callosobruchus are economically important pests of stored, dry postharvest beans of the tribe Phaseoleae. However, the evolution of this feeding habit is poorly understood. Here, we present a reconstruction of the phylogeny of the Asian and African Callosobruchus based on three mitochondrial genes, and assess which traits have been associated with the evolutionary origin or loss of ability to reproduce on dry beans. Our phylogenetic analysis showed that species group into the chinensis and the maculatus clades, which are also supported by genital morphology, and an additional paraphyletic group. Ancestral ability to use dry beans has been lost in the chinensis clade but acquired again in C. chinensis. Dry‐bean use and host‐plant use were both phylogenetically constrained and transitions in the two were significantly correlated. Host shifts from the subtribe Phaseolinae to Cajaninae were more common than the reverse and were more likely in species using young beans. The ability to use dry beans was more likely gained when using Phaseolinae hosts and promoted habitat shifts from tropical to temperate regions. Adaptation to arid climate was also associated with the ability to reproduce on dry beans and on Phaseolinae. Thus, our analysis suggests that physiological adaptations to an arid climate and to Phaseolinae hosts both render beetles predisposed to become pests of cultivated beans.


Biology Letters | 2011

Brains and the city: big-brained passerine birds succeed in urban environments

Alexei A. Maklakov; Simone Immler; Alejandro Gonzalez-Voyer; Johanna Liljestrand Rönn; Niclas Kolm

Urban regions are among the most human-altered environments on Earth and they are poised for rapid expansion following population growth and migration. Identifying the biological traits that determine which species are likely to succeed in urbanized habitats is important for predicting global trends in biodiversity. We provide the first evidence for the intuitive yet untested hypothesis that relative brain size is a key factor predisposing animals to successful establishment in cities. We apply phylogenetic mixed modelling in a Bayesian framework to show that passerine species that succeed in colonizing at least one of 12 European cities are more likely to belong to big-brained lineages than species avoiding these urban areas. These data support findings linking relative brain size with the ability to persist in novel and changing environments in vertebrate populations, and have important implications for our understanding of recent trends in biodiversity.


Current Biology | 2012

Phenotypic Engineering Unveils the Function of Genital Morphology

Cosima Hotzy; Michal Polak; Johanna Liljestrand Rönn; Göran Arnqvist

The rapidly evolving and often extraordinarily complex appearance of male genital morphology of internally fertilizing animals has been recognized for centuries. Postcopulatory sexual selection is regarded as the likely evolutionary engine of this diversity, but direct support for this hypothesis is limited. We used two complementary approaches, evolution through artificial selection and microscale laser surgery, to experimentally manipulate genital morphology in an insect model system. We then assessed the competitive fertilization success of these phenotypically manipulated males and studied the fate of their ejaculate in females using high-resolution radioisotopic labeling of ejaculates. Males with longer genital spines were more successful in gaining fertilizations, providing experimental evidence that male genital morphology influences success in postcopulatory reproductive competition. Furthermore, a larger proportion of the ejaculate moved from the reproductive tract into the female body following mating with males with longer spines, suggesting that genital spines increase the rate at which seminal fluid passes into the female hemolymph. Our results show that genital morphology affects male competitive fertilization success and imply that sexual selection on genital morphology may be mediated in part through seminal fluid.


Journal of Evolutionary Biology | 2008

Correlated evolution between male ejaculate allocation and female remating behaviour in seed beetles (Bruchidae)

Mari Katvala; Johanna Liljestrand Rönn; Göran Arnqvist

Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven‐seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade‐offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.


PLOS ONE | 2015

Male Seminal Fluid Substances Affect Sperm Competition Success and Female Reproductive Behavior in a Seed Beetle

Takashi Yamane; Julieta Goenaga; Johanna Liljestrand Rönn; Göran Arnqvist

Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females’ initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females’ initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species.


Hereditas | 2008

Genetic differentiation among European whitefish ecotypes based on microsatellite data

Marjatta Säisä; Johanna Liljestrand Rönn; Teija Aho; Mats Björklund; Pentti Pasanen; Marja-Liisa Koljonen

The amount of genetic differentiation at DNA microsatellite loci in European whitefish (Coregonus lavaretus) was assessed among ecotypes, populations and run-timing types. The magnitude of genetic changes potentially caused by hatchery broodstock rearing were also compared with those observed in corresponding natural populations. A total of 35 populations were studied, including 33 Coregonus lavaretus populations and two samples of Coregonus peled. Five of the six whitefish ecotypes in Finland were represented within C. lavaretus populations. Genetic diversity among C. lavaretus populations proved to be high compared to two C. peled populations. The genetic D(A) distance between these two species was as high as 0.86. The genetic differentiation among ecotypes was generally low and thus gives support for the hypothesis of one native European whitefish species in Scandinavia. Among the ecotypes the northern, large sparsely-rakered, bottom-dwelling whitefish was most unique. Thus, observed genetic differences in quantitative traits have either developed independently of phylogenetic lineages, or have mixed and later changed according to environments and selection pressures. Overall genetic distances between the anadromous whitefish populations along the Finnish coast, especially in the Bothnian Bay area, were small. Populations of this area have been heavily influenced by human activities, and they also have the highest probability of mixing by natural means. In two cases, the Rivers Iijoki and Tornionjoki, statistically significant genetic differences could be observed between summer- and autumn-run spawning-time types. Wild populations had slightly higher allelic diversity than hatchery-reared populations of corresponding rivers. Although some reduction in genetic diversity during hatchery rearing is possible, it is an important aid in maintaining endangered populations.


BMC Evolutionary Biology | 2015

Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle

Julieta Goenaga; Takashi Yamane; Johanna Liljestrand Rönn; Göran Arnqvist

BackgroundMale seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus.ResultsPhenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which ≥127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production.ConclusionsOur study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation.


Journal of Evolutionary Biology | 2016

Complex mitonuclear interactions and metabolic costs of mating in male seed beetles

Elina Immonen; Johanna Liljestrand Rönn; C. Watson; David Berger; Göran Arnqvist

The lack of evolutionary response to selection on mitochondrial genes through males predicts the evolution of nuclear genetic influence on male‐specific mitochondrial function, for example by gene duplication and evolution of sex‐specific expression of paralogs involved in metabolic pathways. Intergenomic epistasis may therefore be a prevalent feature of the genetic architecture of male‐specific organismal function. Here, we assess the role of mitonuclear genetic variation for male metabolic phenotypes [metabolic rate and respiratory quotient (RQ)] associated with ejaculate renewal, in the seed beetle Callosobruchus maculatus, by assaying lines with crossed combinations of distinct mitochondrial haplotypes and nuclear lineages. We found a significant increase in metabolic rate following mating relative to virgin males. Moreover, processes associated with ejaculate renewal showed variation in metabolic rate that was affected by mitonuclear interactions. Mitochondrial haplotype influenced mating‐related changes in RQ, but this pattern varied over time. Mitonuclear genotype and the energy spent during ejaculate production affected the weight of the ejaculate, but the strength of this effect varied across mitochondrial haplotypes showing that the genetic architecture of male‐specific reproductive function is complex. Our findings unveil hitherto underappreciated metabolic costs of mating and ejaculate renewal, and provide the first empirical demonstration of mitonuclear epistasis on male reproductive metabolic processes.


Functional Ecology | 2017

The pace-of-life: A sex-specific link between metabolic rate and life history in bean beetles

Göran Arnqvist; Biljana Stojković; Johanna Liljestrand Rönn; Elina Immonen

Metabolic rate (MR) is a key functional trait simply because metabolism converts resources into population growth rate. Yet, our empirical understanding of the sources of within species variation i ...


Biology Open | 2017

Postmating sexual selection and the enigmatic jawed genitalia of Callosobruchus subinnotatus

Merel M. Van Haren; Johanna Liljestrand Rönn; Menno Schilthuizen; Göran Arnqvist

ABSTRACT Insect genitalia exhibit rapid divergent evolution. Truly extraordinary structures have evolved in some groups, presumably as a result of postmating sexual selection. To increase our understanding of this phenomenon, we studied the function of one such structure. The male genitalia of Callosobruchus subinnotatus (Coleoptera: Bruchinae) contain a pair of jaw-like structures with unknown function. Here, we used phenotypic engineering to ablate the teeth on these jaws. We then experimentally assessed the effects of ablation of the genital jaws on mating duration, ejaculate weight, male fertilization success and female fecundity, using a double-mating experimental design. We predicted that copulatory wounding in females should be positively related to male fertilization success; however, we found no significant correlation between genital tract scarring in females and male fertilization success. Male fertilization success was, however, positively related to the amount of ejaculate transferred by males and negatively related to female ejaculate dumping. Ablation of male genital jaws did not affect male relative fertilization success but resulted in a reduction in female egg production. Our results suggest that postmating sexual selection in males indeed favors these genital jaws, not primarily through an elevated relative success in sperm competition but by increasing female egg production. Summary: A toothed jaw-like structure on the male genitalia of the seed beetle Callosobruchus subinnotatus increases female egg production after mating.

Collaboration


Dive into the Johanna Liljestrand Rönn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro Gonzalez-Voyer

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teija Aho

Swedish Board of Fisheries

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge