Johanna M. Gostner
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johanna M. Gostner.
World Journal of Cardiology | 2014
H. Mangge; Kathrin Becker; Dietmar Fuchs; Johanna M. Gostner
Multiple factors are involved in the etiology of cardiovascular disease (CVD). Pathological changes occur in a variety of cell types long before symptoms become apparent and diagnosis is made. Dysregulation of physiological functions are associated with the activation of immune cells, leading to local and finally systemic inflammation that is characterized by production of high levels of reactive oxygen species (ROS). Patients suffering from inflammatory diseases often present with diminished levels of antioxidants either due to insufficient dietary intake or, and even more likely, due to increased demand in situations of overwhelming ROS production by activated immune effector cells like macrophages. Antioxidants are suggested to beneficially interfere with diseases-related oxidative stress, however the interplay of endogenous and exogenous antioxidants with the overall redox system is complex. Moreover, molecular mechanisms underlying oxidative stress in CVD are not fully elucidated. Metabolic dybalances are suggested to play a major role in disease onset and progression. Several central signaling pathways involved in the regulation of immunological, metabolic and endothelial function are regulated in a redox-sensitive manner. During cellular immune response, interferon γ-dependent pathways are activated such as tryptophan breakdown by the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, fibroblasts, endothelial and epithelial cells. Neopterin, a marker of oxidative stress and immune activation is produced by GTP-cyclohydrolase I in macrophages and dendritic cells. Nitric oxide synthase (NOS) is induced in several cell types to generate nitric oxide (NO). NO, despite its low reactivity, is a potent antioxidant involved in the regulation of the vasomotor tone and of immunomodulatory signaling pathways. NO inhibits the expression and function of IDO. Function of NOS requires the cofactor tetrahydrobiopterin (BH4), which is produced in humans primarily by fibroblasts and endothelial cells. Highly toxic peroxynitrite (ONOO(-)) is formed solely in the presence of superoxide anion (O2 (-)). Neopterin and kynurenine to tryptophan ratio (Kyn/Trp), as an estimate of IDO enzyme activity, are robust markers of immune activation in vitro and in vivo. Both these diagnostic parameters are able to predict cardiovascular and overall mortality in patients at risk. Likewise, a significant association exists between increase of neopterin concentrations and Kyn/Trp ratio values and the lowering of plasma levels of vitamin-C, -E and -B. Vitamin-B deficiency is usually accompanied by increased plasma homoycsteine. Additional determination of NO metabolites, BH4 and plasma antioxidants in patients with CVD and related clinical settings can be helpful to improve the understanding of redox-regulation in health and disease and might provide a rationale for potential antioxidant therapies in CVD.
Redox Report | 2013
Johanna M. Gostner; Kathrin Becker; Dietmar Fuchs; Robert Sucher
Abstract Reactive oxygen and nitrogen species (ROS–RNS) and other redox active molecules fulfill key functions in immunity. Beside the initiation of cytocidal reactions within the pathogen defense strategy, redox reactions trigger and shape the immune response and are further involved in termination and initialization of cellular restorative processes. Regulatory mechanisms provided by redox-activated signaling events guarantee the correct spatial and temporal proceeding of immunological processes, and continued imbalances in redox homeostasis lead to crucial failures of control mechanisms, thus promoting the development of pathological conditions. Interferon-gamma is the most potent inducer of ROS–RNS formation in target cells like macrophages. Immune-regulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase and neopterin production by GTP-cyclohydrolase-I are initiated during T helper cell type 1 (Th1-type) immune response concomitant to the production of ROS–RNS by immunocompetent cells. Therefore, increased neopterin production and tryptophan breakdown is representative of an activated cellular immune system and can be used for the in vivo and in vitro monitoring of oxidative stress. In parallel, the activation of the redox-sensitive transcription factor nuclear factor-kappa B is a central element in immunity leading to cell type and stimulus-specific expression of responsive genes. Furthermore, T cell activation and proliferation are strongly dependent on the redox potential of the extracellular microenvironment. T cell commitment to Th1, Th2, regulatory T cell, and other phenotypes appears to crucially depend on the activation of redox-sensitive signaling cascades, where oxidative conditions support Th1 development while ‘antioxidative’ stress leads to a shift to allergic Th2-type immune responses.
BMC Cancer | 2011
Johanna M. Gostner; Dominic Fong; Oliver A. Wrulich; Florian Lehne; Marion Zitt; Martin Hermann; Sylvia Krobitsch; Agnieszka Martowicz; Guenther Gastl; Gilbert Spizzo
BackgroundRecently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients.MethodsIn order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed.ResultsFor the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578TEpCAM and MDA-MB-231EpCAM indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231EpCAM but not Hs578TEpCAM cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression.ConclusionsThese data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.
Phytomedicine | 2014
Kathrin Becker; Sebastian Schroecksnadel; Johanna M. Gostner; Cathrine Zaknun; Harald Schennach; Florian Überall; Dietmar Fuchs
Oxidative stress is considered to be critically involved in the normal aging process but also in the development and progression of various human pathologies like cardiovascular and neurodegenerative diseases, as well as of infections and malignant tumors. These pathological conditions involve an overwhelming production of reactive oxygen species (ROS), which are released as part of an anti-proliferative strategy during pro-inflammatory immune responses. Moreover, ROS themselves are autocrine forward regulators of the immune response. Most of the beneficial effects of antioxidants are considered to derive from their influence on the immune system. Due to their antioxidant and/or radical scavenging nature, phytochemicals, botanicals and herbal preparations can be of great importance to prevent oxidation processes and to counteract the activation of redox-regulated signaling pathways. Antioxidants can antagonize the activation of T-cells and macrophages during the immune response and this anti-inflammatory activity could be of utmost importance for the treatment of above-mentioned disorders and for the development of immunotolerance. Herein, we provide an overview of in vitro assays for the measurement of antioxidant and anti-inflammatory activities of plant-derived substances and extracts, by discussing possibilities and limitations of these methods. To determine the capacity of antioxidants, the oxygen radical absorbance capacity (ORAC) assay and the cell-based antioxidant activity (CAA) assay are widely applied. To examine the influence of compounds on the human immune response more closely, the model of mitogen stimulated human peripheral blood mononuclear (PBMC) cells can be applied, and the production of the inflammatory marker neopterin as well as the breakdown of the amino acid tryptophan in culture supernatants can be used as readout to indicate an immunomodulatory potential of the tested compound. These two biomarkers of immune system activation are robust and correlate with the course of cardiovascular, neurodegenerative and malignant tumor diseases, but also with the normal aging process, and they are strongly predictive. Thus, while the simpler ORAC and CAA assays provide insight into one peculiar chemical aspect, namely the neutralization of peroxyl radicals, the more complex PBMC assay is closer to the in vivo conditions as the assay comprehensively enlights several properties of immunomodulatory test compounds.
Current Pharmaceutical Design | 2014
Johanna M. Gostner; Christian Ciardi; Kathrin Becker; Dietmar Fuchs; Robert Sucher
Immune system activation and inflammation are deeply involved in the pathogenesis of a variety of diseases including infections, autoimmunity and malignancy as well as allergy and asthma. The incidence of allergy and asthma has significantly increased during the past decades. Still the background of this phenomenon is not well understood. The contribution of life style and habits are heavily discussed. Among them is a too clean environment which may predispose individuals to an increased sensitivity to allergic responses. Also dietary habits have changed drastically in the Western world, and it appears that especially the increased use of antioxidant food supplements, preservatives and colorants could be of relevance. In vitro experiments show that typical antioxidant compounds like vitamin C and E and the stilbene resveratrol as well as food preservatives such as sulfite, benzoate and sorbic acid and also colorants like curcumin exert significant suppressive effects on the T helper (h)1 immune activation cascade in freshly isolated human peripheral blood mononuclear cells. Obviously, antioxidant compounds interfere with central immunoregulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase (IDO) and neopterin production by GTP-cyclohydrolase I (GCH). Results show an anti-inflammatory property of antioxidants which could shift the Th1-Th2-type immune balance towards Th2-type immunity that is of utmost importance in allergic responses. Additionally, food preservatives reduce the number of pathogens to which humans are exposed by their diet, so that in agreement with the hygiene hypothesis the likelihood of allergy might increase. This review article discusses the beneficial effects which antioxidants may have to counteract inflammatory diseases, but also their potential in the increase of allergy and asthma in the Western world and their involvement in the obesity epidemic.
Current Opinion in Clinical Nutrition and Metabolic Care | 2016
Barbara Strasser; Johanna M. Gostner; Dietmar Fuchs
Purpose of reviewFood is not only necessary as a metabolic fuel for the body, it becomes more and more evident that there exists an association between food and brain functions like mood and cognition. Tryptophan represents a key element for brain functioning, because of its role as a precursor for production of neurotransmitter serotonin (5-hydroxytryptamine). In clinical conditions, which involve chronic immune system activation or under cytokine therapy, lower tryptophan levels because of high catabolism of tryptophan as indicated by the kynurenine to tryptophan ratio are common and often associate with depressive mood. Recent findingsStudies in the in vitro model of mitogen-stimulated peripheral blood mononuclear cells revealed that several phytocompounds, mainly antioxidants like polyphenols and vitamins, can interfere with inflammatory signaling cascades including tryptophan breakdown. If extrapolated to the in vivo situation, such compounds could increase blood and brain tryptophan availability for serotonin production. Although there is some in vivo evidence for the effect of such compounds, outcomes are hardly predictable and most likely depend on the individuals immunological state. SummaryNot only a diet rich in tryptophan but also a diet rich in antioxidants can have a positive impact on mood and cognition. This could be of special relevance for individuals who present with low grade inflammation conditions.
Expert Opinion on Therapeutic Targets | 2015
Johanna M. Gostner; Kathrin Becker; Florian Überall; Dietmar Fuchs
Introduction: Degradation of the essential amino acid tryptophan via indoleamine 2,3-dioxygenase (IDO1) represents an important antiproliferative strategy of the cellular immune response. Tryptophan shortage and accumulation of kynurenine downstream products also affect T-cell responses, providing a negative feedback control of immune activation. IDO1 activity can promote a regulatory phenotype in both T cells and dendritic cells. These phenomena can support tumor immune escape. Areas covered: IDO1 activity reflects the course of several malignancies, and determination of kynurenine to tryptophan ratio in serum/plasma can be used to assess immune activation. Moreover, the accelerated breakdown of tryptophan has been correlated with the development of cancer-associated disturbances such as anemia, weight loss and depression. Tumoral IDO1 expression was correlated with a poor prognosis in several types of tumors, which makes it to an interesting target for immunotherapy. In addition, according to recent data, a role of trytptophan 2,3-dioxygenase (TDO) in tumorigenesis cannot be excluded. Expert opinion: Tryptophan metabolism is critical for cell proliferation, inflammation and immunoregulation. Accelerated tryptophan breakdown favors tumor immune escape. Accordingly, targeting IDO1 by immunotherapy may represent a favorable approach; however, blocking crucial immunoregulatory pathways could also introduce the risk of immune system overactivation, finally leading to unresponsiveness.
Journal of The American College of Nutrition | 2015
Johanna M. Gostner; Sebastian Schroecksnadel; Marcel Jenny; Angela Klein; Florian Ueberall; Harald Schennach; Dietmar Fuchs
Objectives: Coffee consumption is considered to exert an influence on mood, the immune system, cardiovascular disease, and cancer development, but the mechanisms of action of coffee and its compounds are only partly known and understood. Methods: Immunomodulatory effects of filtered extracts of coffee and decaffeinated coffee as well as coffee compounds were investigated in human peripheral blood mononuclear cells (PBMCs) stimulated with mitogen phytohemagglutinin (PHA). The activation of PBMCs was monitored by the breakdown of tryptophan to kynurenine via enzyme indoleamine 2,3-dioxygenase (IDO) and the production of the immune activation marker neopterin by GTP-cyclohydrolase I (GCH1). Both of these biochemical pathways are induced during cellular immune activation in response to the Th1-type cytokine interferon-γ (IFN-γ). Results: Filtered extracts of coffee and decaffeinated coffee both suppressed tryptophan breakdown and neopterin formation in mitogen-stimulated PBMCs efficiently and in a dose-dependent manner. Of 4 coffee compounds tested individually, only gallic acid and less strong also caffeic acid had a consistent suppressive influence but also affected cell viability, whereas pure caffeine and chlorogenic acid exerted no relevant effect in the PBMC assay. Conclusion: The parallel influence of extracts on tryptophan breakdown and neopterin production shows an anti-inflammatory and immunosuppressive property of coffee extracts and some of its compounds. When extrapolating the in vitro results to in vivo, IFN-γ-mediated breakdown of tryptophan could be counteracted by the consumption of coffee or decaffeinated coffee. This may increase tryptophan availability for the biosynthesis of the neurotransmitter 5-hydroxytryptamine (serotonin) and thereby improve mood and quality of life.
Food and Chemical Toxicology | 2014
Kathrin Becker; Sebastian Schroecksnadel; Simon Geisler; Marie Carrière; Johanna M. Gostner; Harald Schennach; Nathalie Herlin; Dietmar Fuchs
Highlights • Effects on immunobiochemical pathways of TiO2 materials were investigated in vitro.• TiO2 bulk and nanomaterial stimulated neopterin production in human PBMC.• There was no stimulatory influence of particles on tryptophan breakdown.• At high particles concentrations, tryptophan breakdown was suppressed.• Results suggest that the total effect of particles is even stronger pro-inflammatory.
Frontiers in Psychiatry | 2015
Johanna M. Gostner; Kathrin Becker; Katharina Kurz; Dietmar Fuchs
Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.