Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Öberg is active.

Publication


Featured researches published by Johanna Öberg.


Neurobiology of Aging | 2008

Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice.

Johanna Öberg; Christian Spenger; Fu-Hua Wang; Anders Andersson; Eric Westman; Peter Skoglund; Dan Sunnemark; Ulf Norinder; Tomas Klason; Lars-Olof Wahlund; Mattias Lindberg

Translational biomarkers in Alzheimers disease based on non-invasive in vivo methods are highly warranted. (1)H magnetic resonance spectroscopy (MRS) is non-invasive and applicable in vivo in both humans and experimental animals. In vivo(1)H MRS and 3D MRI were performed on brains of double transgenic (tg) mice expressing a double mutant human beta-amyloid precursor protein APP(K670N,M671L) and human mutated presenilin gene PS1M146L, and wild-type (wt) littermates at 2.5, 6.5 and 9 months of age using a 9.4T magnet. For quantification, LCModel was used, and the data were analyzed using multivariate data analysis (MVDA). MVDA evidenced a significant separation, which became more pronounced with age, between tg and wt mice at all time points. While myo-inositol and guanidoacetate were important for group separation in young mice, N-acetylaspartate, glutamate and macrolipids were important for separation of aged tg and wt mice. Volume segmentation revealed that brain and hippocampus were readily smaller in tg as compared to wt mice at the age of 2.5 months. Amyloid plaques were seen in 6.5 and 9 months, but not in 2.5 months old animals. In conclusion, differences in brain metabolites could be accurately depicted in tg and wt mice in vivo by combining MRS with MVDA. First differences in metabolite content were readily seen at 2.5 months, when volume defects in tg mice were present, but no amyloid plaques.


Neurology | 2014

Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis

Marco Pagani; Adriano Chiò; Maria Consuelo Valentini; Johanna Öberg; Flavio Nobili; Andrea Calvo; Cristina Moglia; Davide Bertuzzo; Silvia Morbelli; Fabrizio De Carli; Piercarlo Fania; Angelina Cistaro

Objective: We investigated a large sample of patients with amyotrophic lateral sclerosis (ALS) at rest in order to assess the value of 18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) PET as a biomarker to discriminate patients from controls. Methods: A total of 195 patients with ALS and 40 controls underwent brain 18F-FDG-PET, most within 5 months of diagnosis. Spinal and bulbar subgroups of ALS were also investigated. Twenty-five bilateral cortical and subcortical volumes of interest and cerebellum were taken into account, and 18F-FDG uptakes were individually normalized by whole-brain values. Group analyses investigated the ALS-related metabolic changes. Discriminant analysis investigating sensitivity and specificity was performed using the 51 volumes of interest as well as age and sex. Metabolic connectivity was explored by voxel-wise interregional correlation analysis. Results: Hypometabolism was found in frontal, motor, and occipital cortex and hypermetabolism in midbrain, temporal pole, and hippocampus in patients with ALS compared to controls. A similar metabolic pattern was also found in the 2 subgroups. Discriminant analysis showed a sensitivity of 95% and a specificity of 83% in separating patients from controls. Connectivity analysis found a highly significant positive correlation between midbrain and white matter in corticospinal tracts in patients with ALS. Conclusions: 18F-FDG distribution changes in ALS showed a clear pattern of hypometabolism in frontal and occipital cortex and hypermetabolism in midbrain. The latter might be interpreted as the neurobiological correlate of diffuse subcortical gliosis. Discriminant analysis resulted in high sensitivity and specificity in differentiating patients with ALS from controls. Once validated by diseased-control studies, the present methodology might represent a potentially useful biomarker for ALS diagnosis. Classificaton of evidence: This study provides Class III evidence that 18F-FDG-PET accurately distinguishes patients with ALS from normal controls (sensitivity 95.4%, specificity 82.5%).


NeuroImage: Clinical | 2015

Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study

Marco Pagani; F De Carli; Silvia Morbelli; Johanna Öberg; Andrea Chincarini; Giovanni B. Frisoni; Samantha Galluzzi; Robert Perneczky; Alexander Drzezga; B.N.M. van Berckel; Rik Ossenkoppele; Mira Didic; Eric Guedj; Andrea Brugnolo; Agnese Picco; Dario Arnaldi; M. Ferrara; Ambra Buschiazzo; Gianmario Sambuceti; Flavio Nobili

An emerging issue in neuroimaging is to assess the diagnostic reliability of PET and its application in clinical practice. We aimed at assessing the accuracy of brain FDG-PET in discriminating patients with MCI due to Alzheimers disease and healthy controls. Sixty-two patients with amnestic MCI and 109 healthy subjects recruited in five centers of the European AD Consortium were enrolled. Group analysis was performed by SPM8 to confirm metabolic differences. Discriminant analyses were then carried out using the mean FDG uptake values normalized to the cerebellum computed in 45 anatomical volumes of interest (VOIs) in each hemisphere (90 VOIs) as defined in the Automated Anatomical Labeling (AAL) Atlas and on 12 meta-VOIs, bilaterally, obtained merging VOIs with similar anatomo-functional characteristics. Further, asymmetry indexes were calculated for both datasets. Accuracy of discrimination by a Support Vector Machine (SVM) and the AAL VOIs was tested against a validated method (PALZ). At the voxel level SMP8 showed a relative hypometabolism in the bilateral precuneus, and posterior cingulate, temporo-parietal and frontal cortices. Discriminant analysis classified subjects with an accuracy ranging between .91 and .83 as a function of data organization. The best values were obtained from a subset of 6 meta-VOIs plus 6 asymmetry values reaching an area under the ROC curve of .947, significantly larger than the one obtained by the PALZ score. High accuracy in discriminating MCI converters from healthy controls was reached by a non-linear classifier based on SVM applied on predefined anatomo-functional regions and inter-hemispheric asymmetries. Data pre-processing was automated and simplified by an in-house created Matlab-based script encouraging its routine clinical use. Further validation toward nonconverter MCI patients with adequately long follow-up is needed.


American Journal of Neuroradiology | 2009

Cortical Morphometric Subclassification of Frontotemporal Lobar Degeneration

Olof Lindberg; Bram B. Zandbelt; Johanna Öberg; Yi Zhang; Christian Andersen; Jeffrey Chee Leong Looi; Nenad Bogdanovic; Lars-Olof Wahlund

BACKGROUND AND PURPOSE: Frontotemporal lobar degeneration (FTLD) is a primary neurodegenerative disease comprising 3 clinical subtypes: frontotemporal dementia (FTD), semantic dementia (SD), and progressive nonfluent aphasia (PNFA). The subdivision is primarily based on the characteristic clinical symptoms displayed by each subtype. We hypothesized that these symptoms would be correlated to characteristic patterns of brain atrophy, which could be indentified and used for subclassification of subjects with FTLD. MATERIALS AND METHODS: Volumes of 9 cortical regions were manually parcellated and measured on both hemispheres on 27 controls, 12 patients with FTD, 9 patients with PNFA, and 13 patients with SD. The volumetric data were analyzed by traditional t tests and by a multivariate discriminant analysis (partial least squares discriminant analysis). RESULTS: The ensemble or pattern of atrophy was a good discriminator in pair-wise comparison between the subtypes: FTD compared with SD (sensitivity 100% [12/12], specificity 100% [13/13]); FTD compared with PNFA (sensitivity 92% [11/12], specificity 89% [8/9]); and SD compared with PNFA (sensitivity 86% [11/13], specificity 100% [9/9]). Temporal-versus-frontal atrophy was the most important pattern for discriminating SD from the other 2 subtypes. Right-sided versus left-sided atrophy was the most important pattern for discriminating between subjects with FTD and PNFA. CONCLUSIONS: FTLD subtypes generally display a characteristic pattern of atrophy, which may be considered in diagnosing patients with FTLD.


BMC Neuroscience | 2009

In vivo 1H-magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice after donepezil treatment.

Eric Westman; Christian Spenger; Johanna Öberg; Henry Reyer; Jens Pahnke; Lars-Olof Wahlund

BackgroundDonepezil improves cognitive functions in AD patients. Effects on the brain metabolites N-acetyl-L-aspartate, choline and myo- inositol levels have been reported in clinical studies using this drug. The APP/PS1 mouse coexpresses the mutated forms of human β-amyloid precursor protein (APP) and mutated human presenilin 1 (PS1). Consequently, the APP/PS1 mouse model reflects important features of the neurochemical profile in humans. In vivo magnetic resonance spectroscopy (1H-MRS) was performed in fronto-parietal cortex and hippocampus (ctx/hipp) and in striatum (str). Metabolites were quantified using the LCModel and the final analysis was done using multivariate data analysis. The aim of this study was to investigate if multivariate data analysis could detect changes in the pattern of the metabolic profile after donepezil treatment.ResultsSignificant differences were observed in the metabolic pattern of APP/PS1 mice in both str and ctx/hipp before and after donepezil treatment using multivariate data analysis, evidencing a significant treatment effect. A treatment effect was also seen in wild type (wt) mice in str. A significant decrease in the metabolic ratio taurine/creatine (Tau/tCr) was related to donepezil treatment (p < 0.05) in APP/PS1 mice in both brain regions. Furthermore, a significant influence on the choline/creatine (tCho/tCr) level was observed in treated APP/PS1 mice compared to untreated in str (p = 0.011). Finally, there was an increase in glutamate/creatine (Glu/tCr) in str in wt mice treated with donepezil.ConclusionMultivariate data analysis can detect changes in the metabolic profile in APP/PS1 mice after donepezil treatment. Effects on several metabolites that are measurable in vivo using MR spectroscopy were observed. Changes in Tau/tCr and tCho/tCr could possibly be related to changed cholinergic activity caused by donepezil treatment.


European Journal of Neuroscience | 2007

Recovery from spinal cord injury differs between rat strains in a major histocompatibility complex-independent manner

M. Birdsall Abrams; Anna Josephson; Cecilia A. Dominguez; Johanna Öberg; Margarita Diez; Christian Spenger; Lars Olson; Fredrik Piehl; Olle Lidman

Inflammation is a common characteristic of spinal cord injury. The nature of this response, whether it is beneficial or detrimental, has been the subject of debate. It has been reported that susceptibility to autoimmunity is correlated with increased functional impairment following spinal cord injury. As the ability to mount an autoimmune response has most consistently been associated with certain haplotypes of the major histocompatibility complex (MHC), we analysed the possible effects of the MHC haplotype on functional impairment and recovery following spinal cord injury. A contusion injury was induced in experimental autoimmune encephalomyelitis‐susceptible and ‐resistant rats [Dark Agouti, Lewis and Piebald Viral Glaxo (PVG), respectively]. We found that locomotion recovered significantly better in Dark Agouti rats compared with PVG and Lewis rats but an F2 intercross (PVG × PVG‐RT1av1) excluded the possibility that this difference was MHC haplotype‐dependent. Thus, we conclude that recovery following spinal cord injury is subject to considerable genetic heterogeneity that is not coupled to the MHC haplotype region. Continued research of genetic variants regulating recovery following spinal cord injury is warranted.


Brain Topography | 2016

Involvement of Subcortical Brain Structures During Olfactory Stimulation in Multiple Chemical Sensitivity.

Marco Alessandrini; Alessandro Micarelli; Agostino Chiaravalloti; Ernesto Bruno; Roberta Danieli; Mariangela Pierantozzi; Giuseppe Genovesi; Johanna Öberg; Marco Pagani; Orazio Schillaci

Multiple chemical sensitivity (MCS) patients usually react to odour compounds and the majority of neuroimaging studies assessed, especially at the cortical level, many olfactory-related correlates. The purpose of the present study was to depict sub-cortical metabolic changes during a neutral (NC) and pure (OC) olfactory stimulation by using a recently validated 18F-2-fluoro-2-deoxy-d-glucose (FDG)-positron emission tomography/computer tomography procedure in 26 MCS and 11 healthy (HC) resting subjects undergoing a battery of clinical tests. Twelve subcortical volumes of interest were identified by the automated anatomical labeling library and normalized to thalamus FDG uptake. In both groups, when comparing OC to NC, the within-subjects ANOVA demonstrated a relative decreased metabolism in bilateral putamen and hippocampus and a relative increased metabolism in bilateral amygdala, olfactory cortex (OLF), caudate and pallidum. The between-groups ANOVA demonstrated in MCS a significant higher metabolism in bilateral OLF during NC. As in HC subjects negative correlations were found in OC between FDG uptake in bilateral amygdala and hippocampus and odor pleasantness scale, the latter positively correlated with MCS subjects’ bilateral putamen FDG uptake in OC. Besides FDG uptake resemblances in both groups were found, for the first time a relative higher metabolism increase in OLF in MCS subjects at rest with respect to HC was found. When merging this aspect to the different subcortical FDG uptake correlations patterns in the two groups, the present study demonstrated to describe a peculiar metabolic index of behavioral and neurological aspects of MCS complaints.


Journal of Cellular and Molecular Medicine | 2009

Cognitive impairment in the Tg6590 transgenic rat model of Alzheimer’s disease

Ewa Kloskowska; Therese M. Pham; Tatjana Nilsson; Shunwei Zhu; Johanna Öberg; Alina Codita; Lars Østergaard Pedersen; Jan T. Pedersen; Katarzyna Malkiewicz; Bengt Winblad; Ronnie Folkesson; Eirikur Benedikz

Recently, interest in the rat as an animal model of Alzheimer’s disease (AD) has been growing. We have previously described the Tg6590 transgenic rat line expressing the amyloid precursor protein containing the Swedish AD mutation (K670M/N671L) that shows early stages of Aβ deposition, predominantly in cerebrovascular blood vessels, after 15 months of age. Here we show that by the age of 9 months, that is long before the appearance of Aβ deposits, the Tg6590 rats exhibit deficits in the Morris water maze spatial navigation task and altered spontaneous behaviour in the open‐field test. The levels of soluble Aβ were elevated both in the hippocampus and cortex of transgenic animals. Magnetic resonance imaging showed no major changes in the brains of transgenic animals, although they tended to have enlarged lateral ventricles when compared to control animals. The Tg6590 transgenic rat line should prove a suitable model of early AD for advanced studies including serial cerebrospinal fluid sampling, electrophysiology, neuroimaging or complex behavioural testing.


NeuroImage | 2016

Predicting the transition from normal aging to Alzheimer's disease: A statistical mechanistic evaluation of FDG-PET data.

Marco Pagani; Johanna Öberg; Andrea Chincarini; Silvia Morbelli; Andrea Brugnolo; Dario Arnaldi; Agnese Picco; Matteo Bauckneht; Ambra Buschiazzo; Gianmario Sambuceti; Flavio Nobili

The assessment of the degree of order of brain metabolism by means of a statistical mechanistic approach applied to FDG-PET, allowed us to characterize healthy subjects as well as patients with mild cognitive impairment and Alzheimers Disease (AD). The intensity signals from 24 volumes of interest were submitted to principal component analysis (PCA) giving rise to a major first principal component whose eigenvalue was a reliable cumulative index of order. This index linearly decreased from 77 to 44% going from normal aging to AD patients with intermediate conditions between these values (r=0.96, p<0.001). Bootstrap analysis confirmed the statistical significance of the results. The progressive detachment of different brain regions from the first component was assessed, allowing for a purely data driven reconstruction of already known maximally affected areas. We demonstrated for the first time the reliability of a single global index of order in discriminating groups of cognitively impaired patients with different clinical outcome. The second relevant finding was the identification of clusters of regions relevant to AD pathology progressively separating from the first principal component through different stages of cognitive impairment, including patients cognitively impaired but not converted to AD. This paved the way to the quantitative assessment of the functional networking status in individual patients.


European Journal of Neuroscience | 2011

1H-MRS in spinal cord injury: acute and chronic metabolite alterations in rat brain and lumbar spinal cord

Matthias Erschbamer; Johanna Öberg; Eric Westman; Rouslan Sitnikov; Lars Olson; Christian Spenger

A variety of tests of sensorimotor function are used to characterize outcome after experimental spinal cord injury (SCI). These tests typically do not provide information about chemical and metabolic processes in the injured CNS. Here, we used 1H‐magnetic resonance spectroscopy (MRS) to monitor long‐term and short‐term chemical changes in the CNS in vivo following SCI. The investigated areas were cortex, thalamus/striatum and the spinal cord distal to injury. In cortex, glutamate (Glu) decreased 1 day after SCI and slowly returned towards normal levels. The combined glutamine (Gln) and Glu signal was similarly decreased in cortex, but increased in the distal spinal cord, suggesting opposite changes of the Glu/Gln metabolites in cortex and distal spinal cord. In lumbar spinal cord, a marked increase of myo‐inositol was found 3 days, 14 days and 4 months after SCI. Changes in metabolite concentrations in the spinal cord were also found for choline and N‐acetylaspartate. No significant changes in metabolite concentrations were found in thalamus/striatum. Multivariate data analysis allowed separation between rats with SCI and controls for spectra acquired in cortex and spinal cord, but not in thalamus/striatum. Our findings suggest MRS could become a helpful tool to monitor spatial and temporal alterations of metabolic conditions in vivo in the brain and spinal cord after SCI. We provide evidence for dynamic temporal changes at both ends of the neuraxis, cortex cerebri and distal spinal cord, while deep brain areas appear less affected.

Collaboration


Dive into the Johanna Öberg's collaboration.

Top Co-Authors

Avatar

Marco Pagani

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge