Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Roostalu is active.

Publication


Featured researches published by Johanna Roostalu.


Journal of Cell Biology | 2007

Cdc14-regulated midzone assembly controls anaphase B

Anton Khmelinskii; Clare Louise Lawrence; Johanna Roostalu; Elmar Schiebel

Spindle elongation in anaphase of mitosis is a cell cycle–regulated process that requires coordination between polymerization, cross-linking, and sliding of microtubules (MTs). Proteins that assemble at the spindle midzone may be important for this process. In this study, we show that Ase1 and the separase–Slk19 complex drive midzone assembly in yeast. Whereas the conserved MT-bundling protein Ase1 establishes a midzone, separase–Slk19 is required to focus and center midzone components. An important step leading to spindle midzone assembly is the dephosphorylation of Ase1 by the protein phosphatase Cdc14 at the beginning of anaphase. Failure to dephosphorylate Ase1 delocalizes midzone proteins and delays the second, slower phase of anaphase B. In contrast, in cells expressing nonphosphorylated Ase1, anaphase spindle extension is faster, and spindles frequently break. Cdc14 also controls the separase–Slk19 complex indirectly via the Aurora B kinase. Thus, Cdc14 regulates spindle midzone assembly and function directly through Ase1 and indirectly via the separase–Slk19 complex.


BMC Microbiology | 2008

Cell division in Escherichia coli cultures monitored at single cell resolution

Johanna Roostalu; Arvi Jõers; Hannes Luidalepp; Niilo Kaldalu; Tanel Tenson

BackgroundA fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate.ResultsWe monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency.ConclusionIn principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli.


Science | 2011

Directional Switching of the Kinesin Cin8 Through Motor Coupling

Johanna Roostalu; Christian Hentrich; Peter Bieling; Ivo A. Telley; Elmar Schiebel; Thomas Surrey

A molecular motor switches direction upon interacting with individual microtubules or antiparallel microtubules. Kinesin motor proteins are thought to move exclusively in either one or the other direction along microtubules. Proteins of the kinesin-5 family are tetrameric microtubule cross-linking motors important for cell division and differentiation in various organisms. Kinesin-5 motors are considered to be plus-end–directed. However, here we found that purified kinesin-5 Cin8 from budding yeast could behave as a bidirectional kinesin. On individual microtubules, single Cin8 motors were minus-end–directed motors, whereas they switched to plus-end–directed motility when working in a team of motors sliding antiparallel microtubules apart. This kinesin can thus change directionality of movement depending on whether it acts alone or in an ensemble.


Developmental Cell | 2009

Phosphorylation-Dependent Protein Interactions at the Spindle Midzone Mediate Cell Cycle Regulation of Spindle Elongation

Anton Khmelinskii; Johanna Roostalu; Hélio Roque; Claude Antony; Elmar Schiebel

The metaphase-to-anaphase transition is one of the most dramatic and highly regulated steps in cell division. At anaphase onset the protease separase dissolves sister chromatid cohesion. Simultaneously, the mitotic spindle elongates as interpolar microtubules (iMTs) slide apart at the spindle midzone, ensuring chromosome segregation. However, it remains unclear how spindle elongation is coordinated with cell cycle progression. Here we demonstrate that phosphorylation of the midzone organizer Ase1 controls localization and function of Cin8, a kinesin-5 that slides iMTs relative to each other. Phosphorylation of Ase1 by Cdk1 (cyclin-dependent kinase) inhibits Cin8 binding to iMTs, preventing bending and collapse of the metaphase spindle. In anaphase Ase1 dephosphorylation by the separase-activated phosphatase Cdc14 is necessary and sufficient for Cin8 recruitment to the midzone, where it drives spindle elongation. Our results reveal that sliding forces at the midzone are activated by separase and explain how spindle elongation is triggered with anaphase entry.


Cell Cycle | 2010

Cell cycle control of spindle elongation.

Johanna Roostalu; Elmar Schiebel; Anton Khmelinskii

Different organisms employ a variety of strategies to segregate their chromosomes during mitosis. Despite these differences, however, the basic regulatory principles that govern this intricate process are evolutionarily conserved. Above all, rapid dephosphorylation of mitotic phosphoproteins upon the metaphase-to-anaphase transition has proven to be essential for proper function of the mitotic spindle and accurate chromosome segregation in all eukaryotes. Recently, a central midzone component, the microtubule crosslinker Ase1/PRC1 (anaphase spindle elongation 1/protein regulating cytokinesis 1), was uncovered as a universal target of such control mechanism. Depending on its phosphorylation status, Ase1 either restrains spindle elongation in metaphase or promotes it after anaphase onset via recruitment of kinesin motor proteins to the midzone. Here we discuss the potential role of Ase1/PRC1 as a central regulatory platform that interconnects distinct functions of the midzone such as spindle stability, spindle elongation and cytokinesis. Additionally, we provide a comparative overview of the chromosome segregation strategies used by the main model organisms.


eLife | 2017

Structural insight into TPX2-stimulated microtubule assembly.

Rui Zhang; Johanna Roostalu; Thomas Surrey; Eva Nogales

During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation.


Nature Cell Biology | 2013

The multiple talents of kinesin-8

Johanna Roostalu; Thomas Surrey

Multiple activities cooperate to determine the architecture of the mitotic spindle. Kip3 is a kinesin-8 motor protein in budding yeast that acts as a microtubule depolymerase. Now Kip3 is shown to also crosslink and slide antiparallel microtubules, providing additional insights into how kinesin-8 motors control spindle integrity.


The EMBO Journal | 2017

Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility

Rupam Jha; Johanna Roostalu; Nicholas I. Cade; Martina Trokter; Thomas Surrey

Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dyneins activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus‐ends in an EB‐dependent manner or moving processively towards minus ends in an adaptor protein‐dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal‐D2 (BicD2) or the multifunctional regulator Lissencephaly‐1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus‐end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.


Biophysical Journal | 2017

Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement

Todd Fallesen; Johanna Roostalu; Christian Duellberg; Gunnar Pruessner; Thomas Surrey

Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor.


Cell | 2018

Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors

Johanna Roostalu; Jamie Rickman; Claire Thomas; François Nédélec; Thomas Surrey

Summary During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a “nematic” network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.

Collaboration


Dive into the Johanna Roostalu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Nogales

University of California

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Antony

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

François Nédélec

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge