Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna S. Salzer is active.

Publication


Featured researches published by Johanna S. Salzer.


Journal of Parasitology | 2007

Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda.

Johanna S. Salzer; Innocent B. Rwego; Tony L. Goldberg; Mark S. Kuhlenschmidt; Thomas R. Gillespie

In June 2005, we collected 115 fecal samples from wild primates in western Uganda and examined them for Cryptosporidium sp. and Giardia sp. with the use of immunofluorescent antibody (IFA) detection. We sampled primates from an undisturbed forest in Kibale National Park and from 3 highly disturbed forest fragments outside the park. Of disturbed forest samples, red colobus (Pilocolobus tephrosceles) and red-tailed guenons (Cercopithecus ascanius) harbored species of Cryptosporidium or Giardia, but black-and-white colobus (Colobus guereza) did not. All primate samples from undisturbed forest were negative for both parasites. Seven of 35 (20%) red colobus and 1 of 20 red-tailed guenons (5%) from forest fragments were infected with either Cryptosporidium sp. or Giardia sp. The presence of Cryptosporidium and Giardia species in primates living in forest fragments, but not in primates in undisturbed forest, suggests that habitat disturbance may play a role in transmission or persistence of these pathogens.


American Journal of Primatology | 2011

Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact.

Martín M. Kowalewski; Johanna S. Salzer; Joseph C. Deutsch; Mariana Raño; Mark S. Kuhlenschmidt; Thomas R. Gillespie

Exponential expansion of human populations and human activities within primate habitats has resulted in high potential for pathogen exchange creating challenges for biodiversity conservation and global health. Under such conditions, resilient habitat generalists such as black and gold howler monkeys (Alouatta caraya) may act as effective sentinels to overall ecosystem health and alert us to impending epidemics in the human population. To better understand this potential, we examined noninvasively collected fecal samples from black and gold howler monkeys from remote, rural, and village populations in Northern Argentina. We examined all samples (n=90) for the zoonotic protozoa Cryptosporidium sp. and Giardia sp. via immunofluorescent antibody (IFA) detection. All samples were negative for Cryptosporidium sp. The prevalence of Giardia sp. was significantly higher at the rural site (67%) compared with the remote forest (57%) and village (40%) sites. A lack of Cryptosporidium sp. in all samples examined suggests that this pathogen is not a natural component of the howler parasite communities at these sites and that current land‐use patterns and livestock contact are not exposing Argentine howler monkeys to this pathogen. High prevalence of Giardia sp. at all sites suggests that howler monkeys may serve as a viable reservoir for Giardia. Significantly higher prevalence of Giardia sp. at the rural site, where primate–livestock contact is highest, suggests the presence of multiple Giardia clades or increased exposure to Giardia through repeated zoonotic transmission among nonhuman primates, livestock, and/or people. These results highlight the need for future research into the epidemiology, cross‐species transmission ecology, and clinical consequences of Giardia and other infectious agents not only in humans and livestock, but also in the wild animals that share their environments. Am. J. Primatol. 73:75–83, 2011.


Journal of Virology | 2011

Establishment of the Black-Tailed Prairie Dog (Cynomys ludovicianus) as a Novel Animal Model for Comparing Smallpox Vaccines Administered Preexposure in both High- and Low-Dose Monkeypox Virus Challenges

M. S. Keckler; Darin S. Carroll; Nadia F. Gallardo-Romero; R. Ryan Lash; Johanna S. Salzer; Sonja Weiss; Nishi Patel; Cody J. Clemmons; Scott K. Smith; Christina L. Hutson; Kevin L. Karem; Inger K. Damon

ABSTRACT The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 105 or 106 PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.


Ecohealth | 2009

A Legacy of Low-Impact Logging does not Elevate Prevalence of Potentially Pathogenic Protozoa in Free-Ranging Gorillas and Chimpanzees in the Republic of Congo: Logging and Parasitism in African Apes

Thomas R. Gillespie; David Morgan; J. Charlie Deutsch; Mark S. Kuhlenschmidt; Johanna S. Salzer; Kenneth Cameron; Trish Reed; Crickette M. Sanz

Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa.


PLOS ONE | 2011

Monkeypox Disease Transmission in an Experimental Setting: Prairie Dog Animal Model

Christina L. Hutson; Darin S. Carroll; Nadia F. Gallardo-Romero; Sonja Weiss; Cody J. Clemmons; Christine M. Hughes; Johanna S. Salzer; Victoria A. Olson; Jason Abel; Kevin L. Karem; Inger K. Damon

Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.


PLOS ONE | 2013

Transmissibility of the Monkeypox Virus Clades via Respiratory Transmission: Investigation Using the Prairie Dog-Monkeypox Virus Challenge System

Christina L. Hutson; Nadia F. Gallardo-Romero; Darin S. Carroll; Cody J. Clemmons; Johanna S. Salzer; Tamas Nagy; Christine M. Hughes; Victoria A. Olson; Kevin L. Karem; Inger K. Damon

Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.


Journal of Wildlife Diseases | 2013

SEROLOGIC EVIDENCE FOR CIRCULATING ORTHOPOXVIRUSES IN PERIDOMESTIC RODENTS FROM RURAL UGANDA

Johanna S. Salzer; Darin S. Carroll; Innocent B. Rwego; Yu Li; Elizabeth A. Falendysz; Joanna L. Shisler; Kevin L. Karem; Inger K. Damon; Thomas R. Gillespie

The prevalence of orthopoxviruses (OPXV) among wildlife, including monkeypox virus (MPXV), remains largely unknown. Outbreaks of human monkeypox in central Africa have been associated with hunting, butchering, and consuming infected forest animals, primarily rodents and primates. Monkeypox cases have not been reported in east Africa, where human contact with wildlife is more limited. Whether this lack of human disease is due to the absence of MPXV in rodents is unknown. However, testing of wildlife beyond the known geographic distribution of human cases of monkeypox has rarely been conducted, limiting our knowledge of the natural distribution of MPXV and other OPXV. To improve our understanding of the natural distribution of OPXV in Africa and related risks to public health, we conducted a serosurvey of peridomestic rodents (Rattus rattus) in and around traditional dwellings in Kabarole District, Uganda, from May 2008 to July 2008. We tested for OPXV antibody in areas free of human monkeypox. Sera from 41% of the R. rattus individuals sampled reacted to OPXV-specific proteins from multiple, purified OPXV samples, but did not react by enzyme-linked immunosorbent assay. The specific OPXV could not be identified because poxvirus DNA was undetectable in corresponding tissues. We conclude that an OPXV or a similar poxvirus is circulating among wild rodents in Uganda. With the known geographic range of OPXV in rodents now increased, factors that dictate OPXV prevalence and disease will be identified.


PLOS ONE | 2012

The Pox in the North American Backyard: Volepox Virus Pathogenesis in California Mice (Peromyscus californicus)

Nadia F. Gallardo-Romero; Clifton P. Drew; Sonja Weiss; Maureen G. Metcalfe; Yoshinori Nakazawa; Scott K. Smith; Ginny L. Emerson; Christina L. Hutson; Johanna S. Salzer; Jeanine Bartlett; Victoria A. Olson; Cody J. Clemmons; Whitni Davidson; Sherif R. Zaki; Kevin L. Karem; Inger K. Damon; Darin S. Carroll

Volepox virus (VPXV) was first isolated in 1985 from a hind foot scab of an otherwise healthy California vole (Microtus californicus). Subsequent surveys in San Mateo County, CA, revealed serological evidence suggesting that VPXV is endemic to this area, and a second viral isolate from a Pinyon mouse (Peromyscus truei) was collected in 1988. Since then, few studies have been conducted regarding the ecology, pathology, and pathogenicity of VPXV, and its prevalence and role as a potential zoonotic agent remain unknown. To increase our understanding of VPXV disease progression, we challenged 24 California mice (Peromyscus californicus) intranasally with 1.6×103 PFU of purified VPXV. By day five post infection (pi) we observed decreased activity level, conjunctivitis, ruffled hair, skin lesions, facial edema, and crusty noses. A mortality rate of 54% was noted by day eight pi. In addition, internal organ necrosis and hemorrhages were observed during necropsy of deceased or euthanized animals. Viral loads in tissues (brain, gonad, kidney, liver, lung, spleen, submandibular lymph node, and adrenal gland), bodily secretions (saliva, and tears), and excretions (urine, and/or feces) were evaluated and compared using real time-PCR and tissue culture. Viral loads measured as high as 2×109 PFU/mL in some organs. Our results suggest that VPXV can cause extreme morbidity and mortality within rodent populations sympatric with the known VPXV reservoirs.


PLOS Neglected Tropical Diseases | 2015

Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging.

Elizabeth A. Falendysz; Juan G. Lopera; Faye Lorenzsonn; Johanna S. Salzer; Christina L. Hutson; Jeffrey B. Doty; Nadia F. Gallardo-Romero; Darin S. Carroll; Jorge E. Osorio; Tonie E. Rocke

Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003, Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.


Veterinary Parasitology | 2015

Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizoological investigation of a laboratory colony of prairie dogs, Cynomys ludovicianus

Dawn M. Roellig; Johanna S. Salzer; Darin S. Carroll; Jana M. Ritter; Clifton P. Drew; Nadia F. Gallardo-Romero; M. Shannon Keckler; Gregory Langham; Christina L. Hutson; Kevin L. Karem; Thomas R. Gillespie; Govinda S. Visvesvara; Maureen G. Metcalfe; Inger K. Damon; Lihua Xiao

Since 2005, black-tailed prairie dogs (Cynomys ludovicianus) have been collected for use as research animals from field sites in Kansas, Colorado, and Texas. In January of 2012, Giardia trophozoites were identified by histology, thin-section electron microscopy, and immunofluorescent staining in the lumen of the small intestine and colon of a prairie dog euthanized because of extreme weight loss. With giardiasis suspected as the cause of weight loss, a survey of Giardia duodenalis in the laboratory colony of prairie dogs was initiated. Direct immunofluorescent testing of feces revealed active shedding of Giardia cysts in 40% (n=60) of animals held in the vivarium. All tested fecal samples (n=29) from animals in another holding facility where the index case originated were PCR positive for G. duodenalis with assemblages A and B identified from sequencing triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) genes. Both assemblages are considered zoonotic, thus the parasites in prairie dogs are potential human pathogens and indicate prairie dogs as a possible wildlife reservoir or the victims of pathogen spill-over. Molecular testing for other protozoan gastrointestinal parasites revealed no Cryptosporidium infections but identified a host-adapted Enterocytozoon bieneusi genotype group.

Collaboration


Dive into the Johanna S. Salzer's collaboration.

Top Co-Authors

Avatar

Darin S. Carroll

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina L. Hutson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Inger K. Damon

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Karem

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Nadia F. Gallardo-Romero

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cody J. Clemmons

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Weiss

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge