Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Sandgren is active.

Publication


Featured researches published by Johanna Sandgren.


American Journal of Human Genetics | 2008

Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles.

Carl E.G. Bruder; Arkadiusz Piotrowski; Antoinet C.J. Gijsbers; Robin Andersson; Stephen Erickson; Teresita Díaz de Ståhl; Uwe Menzel; Johanna Sandgren; Desiree von Tell; Andrzej Poplawski; Michael R. Crowley; Chiquito J. Crasto; E. Christopher Partridge; Hemant K. Tiwari; David B. Allison; Jan Komorowski; Gert-Jan B. van Ommen; Dorret I. Boomsma; Nancy L. Pedersen; Johan T. den Dunnen; Karin Wirdefeldt; Jan P. Dumanski

The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.


Human Mutation | 2008

Somatic mosaicism for copy number variation in differentiated human tissues

Arkadiusz Piotrowski; Carl E.G. Bruder; Robin Andersson; Teresita Díaz de Ståhl; Uwe Menzel; Johanna Sandgren; Andrzej Poplawski; Desiree von Tell; Chiquito J. Crasto; Adam Bogdan; Rafal Bartoszewski; Zsuzsa Bebok; Maciej Krzyżanowski; Zbigniew Jankowski; E. Christopher Partridge; Jan Komorowski; Jan P. Dumanski

Two major types of genetic variation are known: single nucleotide polymorphisms (SNPs), and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase‐ to megabase‐sized chromosomal segments. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. We tested 34 tissue samples from three subjects and, having analyzed for each tissue ≤10–6 of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82 to 176 kb, often encompassing known genes, potentially affecting gene function. Our results indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. The majority of described CNVs were previously shown to be polymorphic between unrelated subjects, suggesting that some CNVs previously reported as germline might represent somatic events, since in most studies of this kind, only one tissue is typically examined and analysis of parents for the studied subjects is not routinely performed. A considerable number of human phenotypes are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues to better address mosaicism in the studies of somatic disorders. Hum Mutat 0,1–7, 2008.


Nature Genetics | 2014

Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer

Lars Forsberg; Chiara Rasi; Niklas Malmqvist; Hanna Davies; Saichand Pasupulati; Geeta Pakalapati; Johanna Sandgren; Teresita Díaz de Ståhl; Ammar Zaghlool; Vilmantas Giedraitis; Lars Lannfelt; Joannah Score; Nicholas C.P. Cross; Devin Absher; Eva Tiensuu Janson; Cecilia M. Lindgren; Andrew P. Morris; Erik Ingelsson; Lars Lind; Jan P. Dumanski

Incidence and mortality for sex-unspecific cancers are higher among men, a fact that is largely unexplained. Furthermore, age-related loss of chromosome Y (LOY) is frequent in normal hematopoietic cells, but the phenotypic consequences of LOY have been elusive. From analysis of 1,153 elderly men, we report that LOY in peripheral blood was associated with risks of all-cause mortality (hazards ratio (HR) = 1.91, 95% confidence interval (CI) = 1.17–3.13; 637 events) and non-hematological cancer mortality (HR = 3.62, 95% CI = 1.56–8.41; 132 events). LOY affected at least 8.2% of the subjects in this cohort, and median survival times among men with LOY were 5.5 years shorter. Association of LOY with risk of all-cause mortality was validated in an independent cohort (HR = 3.66) in which 20.5% of subjects showed LOY. These results illustrate the impact of post-zygotic mosaicism on disease risk, could explain why males are more frequently affected by cancer and suggest that chromosome Y is important in processes beyond sex determination. LOY in blood could become a predictive biomarker of male carcinogenesis.


Endocrine-related Cancer | 2010

MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets

Goswin Y. Meyer-Rochow; Nicole Jackson; John V. Conaglen; Denis E. Whittle; Muthusamy Kunnimalaiyaan; Herbert Chen; Gunnar Westin; Johanna Sandgren; Peter Stålberg; Elham Khanafshar; Daniel Shibru; Quan-Yang Duh; Orlo H. Clark; Electron Kebebew; Anthony J. Gill; Rory Clifton-Bligh; Bruce G. Robinson; Diana E. Benn; Stan B. Sidhu

MicroRNAs (miRNAs) are small RNAs ( approximately 22 bp) that post-transcriptionally regulate protein expression and are found to be differentially expressed in a number of human cancers. There is increasing evidence to suggest that miRNAs could be useful in cancer diagnosis, prognosis, and therapy. We performed miRNA microarray expression profiling on a cohort of 12 benign and 12 malignant pheochromocytomas and identified a number of differentially expressed miRNAs. These results were validated in a separate cohort of ten benign and ten malignant samples using real-time quantitative RT-PCR; benign samples had a minimum follow-up of at least 2 years. It was found that IGF2 as well as its intronic miR-483-5p was over-expressed, while miR-15a and miR-16 were under-expressed in malignant tumours compared with benign tumours. These miRNAs were found to be diagnostic and prognostic markers for malignant pheochromocytoma. The functional role of miR-15a and miR-16 was investigated in vitro in the rat PC12 pheochromocytoma cell line, and these miRNAs were found to regulate cell proliferation via their effect on cyclin D1 and apoptosis. These data indicate that miRNAs play a pivotal role in the biology of malignant pheochromocytoma, and represent an important class of diagnostic and prognostic biomarkers and therapeutic targets warranting further investigation.


Bioinformatics | 2008

A segmental maximum a posteriori approach to genome-wide copy number profiling

Robin Andersson; Carl E.G. Bruder; Arkadiusz Piotrowski; Uwe Menzel; Helena Nord; Johanna Sandgren; Torgeir R. Hvidsten; Teresita Diaz de Ståhl; Jan P. Dumanski; Jan Komorowski

MOTIVATION Copy number profiling methods aim at assigning DNA copy numbers to chromosomal regions using measurements from microarray-based comparative genomic hybridizations. Among the proposed methods to this end, Hidden Markov Model (HMM)-based approaches seem promising since DNA copy number transitions are naturally captured in the model. Current discrete-index HMM-based approaches do not, however, take into account heterogeneous information regarding the genomic overlap between clones. Moreover, the majority of existing methods are restricted to chromosome-wise analysis. RESULTS We introduce a novel Segmental Maximum A Posteriori approach, SMAP, for DNA copy number profiling. Our method is based on discrete-index Hidden Markov Modeling and incorporates genomic distance and overlap between clones. We exploit a priori information through user-controllable parameterization that enables the identification of copy number deviations of various lengths and amplitudes. The model parameters may be inferred at a genome-wide scale to avoid overfitting of model parameters often resulting from chromosome-wise model inference. We report superior performances of SMAP on synthetic data when compared with two recent methods. When applied on our new experimental data, SMAP readily recognizes already known genetic aberrations including both large-scale regions with aberrant DNA copy number and changes affecting only single features on the array. We highlight the differences between the prediction of SMAP and the compared methods and show that SMAP accurately determines copy number changes and benefits from overlap consideration.


European Journal of Human Genetics | 2010

Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression.

Andrzej Poplawski; Michał Jankowski; Stephen Erickson; Teresita Díaz de Ståhl; E. Christopher Partridge; Chiquito J. Crasto; Jingyu Guo; John Gibson; Uwe Menzel; Carl E.G. Bruder; Aneta Kaczmarczyk; Magdalena Benetkiewicz; Robin Andersson; Johanna Sandgren; Barbara Zegarska; Dariusz Bała; Ewa Śrutek; David B. Allison; Arkadiusz Piotrowski; Wojciech Zegarski; Jan P. Dumanski

Breast cancer is a major cause of morbidity and mortality in women and its metastatic spread is the principal reason behind the fatal outcome. Metastasis-related research of breast cancer is however underdeveloped when compared with the abundant literature on primary tumors. We applied an unexplored approach comparing at high resolution the genomic profiles of primary tumors and synchronous axillary lymph node metastases from 13 patients with breast cancer. Overall, primary tumors displayed 20% higher number of aberrations than metastases. In all but two patients, we detected in total 157 statistically significant differences between primary lesions and matched metastases. We further observed differences that can be linked to metastatic disease and there was also an overlapping pattern of changes between different patients. Many of the differences described here have been previously linked to poor patient survival, suggesting that this is a viable approach toward finding biomarkers for disease progression and definition of new targets useful for development of anticancer drugs. Frequent genetic differences between primary tumors and metastases in breast cancer also question, at least to some extent, the role of primary tumors as a surrogate subject of study for the systemic disease.


Endocrine-related Cancer | 2010

Recurrent genomic alterations in benign and malignant pheochromocytomas and paragangliomas revealed by whole-genome array comparative genomic hybridization analysis

Johanna Sandgren; Teresita Díaz de Ståhl; Robin Andersson; Uwe Menzel; Arkadiusz Piotrowski; Helena Nord; Nimrod Kiss; Michael Brauckhoff; Jan Komorowski; Henning Dralle; Ola Hessman; Catharina Larsson; Göran Åkerström; Carl E.G. Bruder; Jan P. Dumanski; Gunnar Westin

Pheochromocytomas and abdominal paragangliomas are adrenal and extra-adrenal catecholamine-producing tumours. They arise due to heritable cancer syndromes, or more frequently occur sporadically due to an unknown genetic cause. The majority of cases are benign, but malignant tumours are observed. Previous comparative genomic hybridization (CGH) and loss of heterozygosity studies have shown frequent deletions of chromosome arms 1p, 3q and 22q in pheochromocytomas. We applied high-resolution whole-genome array CGH on 53 benign and malignant pheochromocytomas and paragangliomas to narrow down candidate regions as well as to identify chromosomal alterations more specific to malignant tumours. Minimal overlapping regions (MORs) were identified on 16 chromosomes, with the most frequent MORs of deletion (> or = 32%) occurring on chromosome arms 1p, 3q, 11p/q, 17p and 22q, while the chromosome arms 1q, 7p, 12q and 19p harboured the most common MORs of gain (> or = 14%). The most frequent MORs (61-75%) in the pheochromocytomas were identified at 1p, and the four regions of common losses encompassed 1p36, 1p32-31, 1p22-21 and 1p13. Tumours that did not show 1p loss generally demonstrated aberrations on chromosome 11. Gain of chromosomal material was significantly more frequent among the malignant cases. Moreover, gain at 19q, trisomy 12 and loss at 11q were positively associated with malignant pheochromocytomas, while 1q gain was commonly observed in the malignant paragangliomas. Our study revealed novel and narrow recurrent chromosomal regions of loss and gain at several autosomes, a prerequisite for identifying candidate tumour suppressor genes and oncogenes involved in the development of adrenal and extra-adrenal catecholamine-producing tumours.


Neuro-oncology | 2009

Characterization of novel and complex genomic aberrations in glioblastoma using a 32K BAC array.

Helena Nord; Christian Hartmann; Robin Andersson; Uwe Menzel; Susan Pfeifer; Arkadiusz Piotrowski; Adam Bogdan; Wojciech Kloc; Johanna Sandgren; Tommie Olofsson; Göran Hesselager; Erik Blomquist; Jan Komorowski; Andreas von Deimling; Carl E.G. Bruder; Jan P. Dumanski; Teresita Díaz de Ståhl

Glioblastomas (GBs) are malignant CNS tumors often associated with devastating symptoms. Patients with GB have a very poor prognosis, and despite treatment, most of them die within 12 months from diagnosis. Several pathways, such as the RAS, tumor protein 53 (TP53), and phosphoinositide kinase 3 (PIK3) pathways, as well as the cell cycle control pathway, have been identified to be disrupted in this tumor. However, emerging data suggest that these aberrations represent only a fraction of the genetic changes involved in gliomagenesis. In this study, we have applied a 32K clone-based genomic array, covering 99% of the current assembly of the human genome, to the detailed genetic profiling of a set of 78 GBs. Complex patterns of aberrations, including high and narrow copy number amplicons, as well as a number of homozygously deleted loci, were identified. Amplicons that varied both in number (three on average) and in size (1.4 Mb on average) were frequently detected (81% of the samples). The loci encompassed not only previously reported oncogenes (EGFR, PDGFRA, MDM2, and CDK4) but also numerous novel oncogenes as GRB10, MKLN1, PPARGC1A, HGF, NAV3, CNTN1, SYT1, and ADAMTSL3. BNC2, PTPLAD2, and PTPRE, on the other hand, represent novel candidate tumor suppressor genes encompassed within homozygously deleted loci. Many of these genes are already linked to several forms of cancer; others represent new candidate genes that may serve as prognostic markers or even as therapeutic targets in the future. The large individual variation observed between the samples demonstrates the underlying complexity of the disease and strengthens the demand for an individualized therapy based on the genetic profile of the patient.


Experimental and Molecular Medicine | 2010

Integrative epigenomic and genomic analysis of malignant pheochromocytoma

Johanna Sandgren; Robin Andersson; Alvaro Rada-Iglesias; Stefan Enroth; Göran Åkerström; Jan P. Dumanski; Jan Komorowski; Gunnar Westin; Claes Wadelius

Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.


Molecular and Cellular Endocrinology | 2005

Cytokines affect PDX-1 expression, insulin and proinsulin secretion from iNOS deficient murine islets.

Annika K. Andersson; Andreas Börjesson; Johanna Sandgren; Stellan Sandler

In rodent islets, exposure to interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) induces expression of inducible nitric oxide synthase (iNOS) and subsequent nitric oxide (NO) formation, which may inhibit islet function. However, cytokines may also induce NO-independent islet suppression. The present aim was to investigate the effect of cytokine exposure to iNOS deficient (iNOS-/-) mouse islets on various islet functions. Islets from iNOS-/- and wt mice exposed to IL-1beta or (IL-1beta + IFN-gamma) for 2-20 h showed different kinetics of glucose-stimulated insulin secretion. In iNOS-/- islets, IL-1beta at high glucose induced a delayed and prolonged stimulation of insulin secretion, and this was followed by an increase in phospholipase D mRNA expression. After 6 and 24 h, proinsulin convertase 1 and 2 (PC1 and PC2) mRNA expression was suppressed and proinsulin secretion increased from wt islets. In iNOS-/- islets, PC1 expression was recovered after 24 h, and there was no difference in proinsulin secretion. PDX-1 mRNA expression was suppressed independent of NO-formation. We conclude that cytokines induce both NO-dependent and NO-independent functional inhibition of murine beta-cells.

Collaboration


Dive into the Johanna Sandgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Komorowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl E.G. Bruder

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrzej Poplawski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge