Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Ulvila is active.

Publication


Featured researches published by Johanna Ulvila.


Cell | 2005

Eater, a Transmembrane Protein Mediating Phagocytosis of Bacterial Pathogens in Drosophila

Christine Kocks; Ju Hyun Cho; Nadine T. Nehme; Johanna Ulvila; Alan Pearson; Marie Meister; Charles Strom; Stephanie L. Conto; Charles Hetru; Lynda M. Stuart; Thilo Stehle; Jules A. Hoffmann; Jean-Marc Reichhart; Dominique Ferrandon; Mika Rämet; R. Alan B. Ezekowitz

Phagocytosis is a complex, evolutionarily conserved process that plays a central role in host defense against infection. We have identified a predicted transmembrane protein, Eater, which is involved in phagocytosis in Drosophila. Transcriptional silencing of the eater gene in a macrophage cell line led to a significant reduction in the binding and internalization of bacteria. Moreover, the N terminus of the Eater protein mediated direct microbial binding which could be inhibited with scavenger receptor ligands, acetylated, and oxidized low-density lipoprotein. In vivo, eater expression was restricted to blood cells. Flies lacking the eater gene displayed normal responses in NF-kappaB-like Toll and IMD signaling pathways but showed impaired phagocytosis and decreased survival after bacterial infection. Our results suggest that Eater is a major phagocytic receptor for a broad range of bacterial pathogens in Drosophila and provide a powerful model to address the role of phagocytosis in vivo.


Journal of Biological Chemistry | 2006

Double-stranded RNA Is Internalized by Scavenger Receptor-mediated Endocytosis in Drosophila S2 Cells

Johanna Ulvila; Mataleena Parikka; Anni Kleino; Raija Sormunen; R. Alan B. Ezekowitz; Christine Kocks; Mika Rämet

Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.


The EMBO Journal | 2005

Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway

Anni Kleino; Susanna Valanne; Johanna Ulvila; Jenni Kallio; Henna Myllymäki; Heidi Enwald; Svenja Stöven; Mickael Poidevin; Ryu Ueda; Dan Hultmark; Bruno Lemaitre; Mika Rämet

The Imd signaling cascade, similar to the mammalian TNF‐receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large‐scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell‐derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We identified seven gene products required for the Attacin response in vitro, including two novel Imd pathway components: inhibitor of apoptosis 2 (Iap2) and transforming growth factor‐activated kinase 1 (TAK1)‐binding protein (TAB). Iap2 is required for antimicrobial peptide response also by the fat body in vivo. Both these factors function downstream of Imd. Neither TAB nor Iap2 is required for Relish cleavage, but may be involved in Relish nuclear localization in vitro, suggesting a novel mode of regulation of the Imd pathway. Our results show that an RNAi‐based approach is suitable to identify genes in conserved signaling cascades.


Journal of Immunology | 2008

Pirk Is a Negative Regulator of the Drosophila Imd Pathway

Anni Kleino; Henna Myllymäki; Jenni Kallio; Leena-Maija Vanha-aho; Kaisa E. Oksanen; Johanna Ulvila; Dan Hultmark; Susanna Valanne; Mika Rämet

NF-κB transcription factors are involved in evolutionarily conserved signaling pathways controlling multiple cellular processes including apoptosis and immune and inflammatory responses. Immune response of the fruit fly Drosophila melanogaster to Gram-negative bacteria is primarily mediated via the Imd (immune deficiency) pathway, which closely resembles the mammalian TNFR signaling pathway. Instead of cytokines, the main outcome of Imd signaling is the production of antimicrobial peptides. The pathway activity is delicately regulated. Although many of the Imd pathway components are known, the mechanisms of negative regulation are more elusive. In this study we report that a previously uncharacterized gene, pirk, is highly induced upon Gram-negative bacterial infection in Drosophila in vitro and in vivo. pirk encodes a cytoplasmic protein that coimmunoprecipitates with Imd and the cytoplasmic tail of peptidoglycan recognition protein LC (PGRP-LC). RNA interference-mediated down-regulation of Pirk caused Imd pathway hyperactivation upon infection with Gram-negative bacteria, while overexpression of pirk reduced the Imd pathway response both in vitro and in vivo. Furthermore, pirk-overexpressing flies were more susceptible to Gram-negative bacterial infection than wild-type flies. We conclude that Pirk is a negative regulator of the Imd pathway.


Journal of Immunology | 2010

Genome-Wide RNA Interference in Drosophila Cells Identifies G Protein-Coupled Receptor Kinase 2 as a Conserved Regulator of NF-κB Signaling

Susanna Valanne; Henna Myllymäki; Jenni Kallio; Martin R. Schmid; Anni Kleino; Astrid Murumägi; Laura Airaksinen; Tapio Kotipelto; Meri Kaustio; Johanna Ulvila; Shiva Seyedoleslami Esfahani; Ylva Engström; Olli Silvennoinen; Dan Hultmark; Mataleena Parikka; Mika Rämet

Because NF-κB signaling pathways are highly conserved in evolution, the fruit fly Drosophila melanogaster provides a good model to study these cascades. We carried out an RNA interference (RNAi)-based genome-wide in vitro reporter assay screen in Drosophila for components of NF-κB pathways. We analyzed 16,025 dsRNA-treatments and identified 10 novel NF-κB regulators. Of these, nine dsRNA-treatments affect primarily the Toll pathway. G protein-coupled receptor kinase (Gprk)2, CG15737/Toll pathway activation mediating protein, and u-shaped were required for normal Drosomycin response in vivo. Interaction studies revealed that Gprk2 interacts with the Drosophila IκB homolog Cactus, but is not required in Cactus degradation, indicating a novel mechanism for NF-κB regulation. Morpholino silencing of the zebrafish ortholog of Gprk2 in fish embryos caused impaired cytokine expression after Escherichia coli infection, indicating a conserved role in NF-κB signaling. Moreover, small interfering RNA silencing of the human ortholog GRK5 in HeLa cells impaired NF-κB reporter activity. Gprk2 RNAi flies are susceptible to infection with Enterococcus faecalis and Gprk2 RNAi rescues Toll10b-induced blood cell activation in Drosophila larvae in vivo. We conclude that Gprk2/GRK5 has an evolutionarily conserved role in regulating NF-κB signaling.


Apmis | 2011

Drosophila phagocytosis – still many unknowns under the surface

Johanna Ulvila; Leena-Maija Vanha-aho; Mika Rämet

Ulvila J, Vanha‐aho L‐M, Rämet M. Drosophila phagocytosis – still many unknowns under the surface. APMIS 2011; 119: 651–62.


Hypertension | 2014

Connective Tissue Growth Factor Inhibition Attenuates Left Ventricular Remodeling and Dysfunction in Pressure Overload–Induced Heart Failure

Zoltan Szabo; Johanna Magga; Tarja Alakoski; Johanna Ulvila; Jarkko Piuhola; Laura Vainio; Kari I. Kivirikko; Olli Vuolteenaho; Heikki Ruskoaho; Kenneth E. Lipson; Pierre Signore; Risto Kerkelä

Connective tissue growth factor (CTGF) is involved in the pathogenesis of various fibrotic disorders. However, its role in the heart is not clear. To investigate the role of CTGF in regulating the development of cardiac fibrosis and heart failure, we subjected mice to thoracic aortic constriction (TAC) or angiotensin II infusion, and antagonized the function of CTGF with CTGF monoclonal antibody (mAb). After 8 weeks of TAC, mice treated with CTGF mAb had significantly better preserved left ventricular (LV) systolic function and reduced LV dilatation compared with mice treated with control immunoglobulin G. CTGF mAb–treated mice exhibited significantly smaller cardiomyocyte cross-sectional area and reduced expression of hypertrophic marker genes. CTGF mAb treatment reduced the TAC-induced production of collagen 1 but did not significantly attenuate TAC-induced accumulation of interstitial fibrosis. Analysis of genes regulating extracellular matrix proteolysis showed decreased expression of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 in mice treated with CTGF mAb. In contrast to TAC, antagonizing the function of CTGF had no effect on LV dysfunction or LV hypertrophy in mice subjected to 4-week angiotensin II infusion. Further analysis showed that angiotensin II–induced expression of hypertrophic marker genes or collagens was not affected by treatment with CTGF mAb. In conclusion, CTGF mAb protects from adverse LV remodeling and LV dysfunction in hearts subjected to pressure overload by TAC. Antagonizing the function of CTGF may offer protection from cardiac end-organ damage in patients with hypertension.


Journal of Leukocyte Biology | 2011

Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance

Johanna Ulvila; Leena-Maija Vanha-aho; Anni Kleino; Mari Vähä-Mäkilä; Milka Vuoksio; Sinikka Eskelinen; Dan Hultmark; Christine Kocks; Mikko Hallman; Mataleena Parikka; Mika Rämet

Phagocytosis is an ancient cellular process that plays an important role in host defense. In Drosophila melanogaster phagocytic, macrophage‐like hemocytes recognize and ingest microbes. We performed an RNAi‐based in vitro screen in the Drosophila hemocyte cell line S2 and identified Abi, cpa, cofilin regulator 14‐3‐3ζ, tlk, CG2765, and CG15609 as mediators of bacterial phagocytosis. Of these identified genes, 14‐3‐3ζ had an evolutionarily conserved role in phagocytosis: bacterial phagocytosis was compromised when 14‐3‐3ζ was targeted with RNAi in primary Drosophila hemocytes and when the orthologous genes Ywhab and Ywhaz were silenced in zebrafish and mouse RAW 264.7 cells, respectively. In Drosophila and zebrafish infection models, 14‐3‐3ζ was required for resistance against Staphylococcus aureus. We conclude that 14‐3‐3ζ is essential for phagocytosis and microbial resistance in insects and vertebrates.


PLOS ONE | 2012

A Potential Novel Spontaneous Preterm Birth Gene, AR, Identified by Linkage and Association Analysis of X Chromosomal Markers

Minna K. Karjalainen; Johanna M. Huusko; Johanna Ulvila; Jenni Sotkasiira; Aino Luukkonen; Kari Teramo; Jevon Plunkett; Verneri Anttila; Aarno Palotie; Ritva Haataja; Louis J. Muglia; Mikko Hallman

Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD  = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥26) were overrepresented and short repeats (≤19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB.


Basic Research in Cardiology | 2016

Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart

Ábel Perjés; Teemu Kilpiö; Johanna Ulvila; Johanna Magga; Tarja Alakoski; Zoltan Szabo; Laura Vainio; Eveliina Halmetoja; Olli Vuolteenaho; Ulla E. Petäjä-Repo; István Szokodi; Risto Kerkelä

The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.

Collaboration


Dive into the Johanna Ulvila's collaboration.

Top Co-Authors

Avatar

Mika Rämet

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge