Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Viiri is active.

Publication


Featured researches published by Johanna Viiri.


Journal of Cellular and Molecular Medicine | 2009

Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy‐mediated proteolysis in human retinal pigment epithelial cells

Tuomas Ryhänen; Juha M.T. Hyttinen; Jürgen Kopitz; Kirsi Rilla; Erkki Kuusisto; Eliisa Mannermaa; Johanna Viiri; Carina I. Holmberg; Ilkka Immonen; Seppo Meri; Jussi Parkkinen; Eeva-Liisa Eskelinen; Hannu Uusitalo; Antero Salminen; Kai Kaarniranta

The pathogenesis of age‐related macular degeneration involves chronic oxidative stress, impaired degradation of membranous discs shed from photoreceptor outer segments and accumulation of lysosomal lipofuscin in retinal pigment epithelial (RPE) cells. It has been estimated that a major part of cellular proteolysis occurs in proteasomes, but the importance of proteasomes and the other proteolytic pathways including autophagy in RPE cells is poorly understood. Prior to proteolysis, heat shock proteins (Hsps), agents that function as molecular chaperones, attempt to refold misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. In the present study, the roles of the Hsp70 molecular chaperone and proteasomal and lysosomal proteolytic pathways were evaluated in human RPE cells (ARPE‐19). The Hsp70 and ubiquitin protein levels and localization were analysed by Western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. Hsp70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. The proteasome inhibitor MG‐132 evoked the accumulation of perinuclear aggregates positive for Hsp70, ubiquitin‐protein conjugates and the lysosomal membrane protein LAMP‐2. Interestingly, the hsp70 mRNA depletion significantly increased cell death in conjunction with proteasome inhibition. We found that the accumulation of lysosomes was reversible: a cessation of proteasome inhibition led to clearance of the deposits via a mechanism believed to include autophagy. The molecular chaperone Hsp70, proteasomes and autophagy have an important regulatory role in the protein turnover of human RPE cells and may thus open new avenues for understanding degenerative processes in retinal cells.


PLOS ONE | 2013

Autophagy Activation Clears ELAVL1/HuR-Mediated Accumulation of SQSTM1/p62 during Proteasomal Inhibition in Human Retinal Pigment Epithelial Cells

Johanna Viiri; Marialaura Amadio; Nicoletta Marchesi; Juha M.T. Hyttinen; Niko Kivinen; Reijo Sironen; Kirsi Rilla; Saeed Akhtar; Alessandro Provenzani; Vito Giuseppe D'Agostino; Stefano Govoni; Alessia Pascale; Hansjürgen T. Agostini; Goran Petrovski; Antero Salminen; Kai Kaarniranta

Age-related macular degeneration (AMD) is the most common reason of visual impairment in the elderly in the Western countries. The degeneration of retinal pigment epithelial cells (RPE) causes secondarily adverse effects on neural retina leading to visual loss. The aging characteristics of the RPE involve lysosomal accumulation of lipofuscin and extracellular protein aggregates called “drusen”. Molecular mechanisms behind protein aggregations are weakly understood. There is intriguing evidence suggesting that protein SQSTM1/p62, together with autophagy, has a role in the pathology of different degenerative diseases. It appears that SQSTM1/p62 is a connecting link between autophagy and proteasome mediated proteolysis, and expressed strongly under the exposure to various oxidative stimuli and proteasomal inhibition. ELAVL1/HuR protein is a post-transcriptional factor, which acts mainly as a positive regulator of gene expression by binding to specific mRNAs whose corresponding proteins are fundamental for key cellular functions. We here show that, under proteasomal inhibitor MG-132, ELAVL1/HuR is up-regulated at both mRNA and protein levels, and that this protein binds and post-transcriptionally regulates SQSTM1/p62 mRNA in ARPE-19 cell line. Furthermore, we observed that proteasomal inhibition caused accumulation of SQSTM1/p62 bound irreversibly to perinuclear protein aggregates. The addition of the AMPK activator AICAR was pro-survival and promoted cleansing by autophagy of the former complex, but not of the ELAVL1/HuR accumulation, indeed suggesting that SQSTM1/p62 is decreased through autophagy-mediated degradation, while ELAVL1/HuR through the proteasomal pathway. Interestingly, when compared to human controls, AMD donor samples show strong SQSTM1/p62 rather than ELAVL1/HuR accumulation in the drusen rich macular area suggesting impaired autophagy in the pathology of AMD.


Ageing Research Reviews | 2014

Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases.

Juha M.T. Hyttinen; Marialaura Amadio; Johanna Viiri; Alessia Pascale; Antero Salminen; Kai Kaarniranta

Processing of misfolded proteins is important in order for the cell to maintain its normal functioning and homeostasis. Three systems control the quality of proteins: chaperone-mediated refolding, proteasomal degradation of ubiquitinated proteins, and finally, when the two others fail, aggrephagy, as selective form of autophagy, degrades ubiquitin-labelled aggregated cargos. In this route misfolded proteins gradually form larger aggregates, aggresomes and they eventually become double membrane-wrapped organelles called autophagosomes, which become degraded when they fuse to lysosomes, for reuse by the cell. The stages, the main molecules participating in the process, and the regulation of aggrephagy are discussed here, as is the role of protein aggregation in protein accumulation diseases. In particular, we emphasize that both Alzheimers disease and age-related macular degeneration, two of the most common pathologies in the aged, are characterized by altered protein clearance and deposits. Based on the hypothesis that manipulations of autophagy may be potentially useful in these and other aggregation-related diseases, we will discuss some promising therapeutic strategies to counteract protein aggregates-induced cellular toxicity.


European Journal of Pharmacology | 2008

Radicicol but not geldanamycin evokes oxidative stress response and efflux protein inhibition in ARPE-19 human retinal pigment epithelial cells

Tuomas Ryhänen; Eliisa Mannermaa; Niku Oksala; Johanna Viiri; Tuomas Paimela; Antero Salminen; Mustafa Atalay; Kai Kaarniranta

Drug delivery to retinal cells has represented a major challenge for ophthalmologists for many decades. However, drug targeting to the retina is essential in therapies against retinal diseases such as age-related macular degeneration, the most common reason of blindness in the developed countries. Retinal cells are chronically exposed to oxidative stress that contributes to cellular senescence and may cause neovascularization in the most severe age-related macular degeneration cases. Various pre- and clinical studies have revealed that heat shock protein 90 (HSP90) inhibitors, such as geldanamycin and radicicol, are promising drugs in the treatment of different malignant processes. In this study, our goal was to compare the effects of 0.1 microM, 1 microM or 5 microM geldanamycin or radicicol on the oxidative stress response, cytotoxicity, and efflux protein activity (a protein pump which removes drugs from cells) in ARPE-19 (human retinal pigment epithelial, RPE) cells. Our findings indicate that geldanamycin and radicicol increased HSP70 and HSP27 expression analyzed by western blotting. Cellular levels of protein carbonyls were increased in response to 0.1 microM (P=0.048 for 24 h, P=0.018 for 48 h) or 5 microM (P=0.030 for 24 h, P=0.046 for 48 h) radicicol but not to geldanamycin analyzed by ELISA assay. In addition, HNE-protein adducts were accumulated in the RPE cells exposed to 0.1 microM or 5 microM radicicol but not to geldanamycin analyzed by western blotting. However, MTT assay revealed that 5 microM geldanamycin reduced cellular viability 20-30% (P<0.05 for 24 h, P<0.01 for 48 h), but this was not observed at any radicicol concentration in RPE cells. Interestingly, the increased oxidative stress response was associated with efflux protein inhibition (20-30%) when the cells were exposed to 1 microM or 5 microM (P<0.05) radicicol, but not in geldanamycin-treated RPE cells. These novel findings help in understanding the influence of HSP90 inhibition and regulatory mechanisms of drug delivery to retinal cells.


Pharmacological Research | 2011

Celastrol regulates innate immunity response via NF-κB and Hsp70 in human retinal pigment epithelial cells

Tuomas Paimela; Juha M.T. Hyttinen; Johanna Viiri; Tuomas Ryhänen; Reijo Karjalainen; Antero Salminen; Kai Kaarniranta

Elevated nuclear factor kappa B (NF-κB) activity and interleukin-6 (IL-6) secretion participates in the pathology of several age and inflammatory-related diseases, including age-related macular degeneration (AMD), in which retinal pigment epithelial cells are the key target. Recent findings reveal that heat shock protein 70 (Hsp70) may affect regulation of NF-κB. In the current study, effects of Hsp70 expression on NF-κB RelA/p65 activity were evaluated in human retinal pigment epithelial cells (ARPE-19) by using celastrol, a novel anti-inflammatory compound. Anti-inflammatory properties of celastrol were determined by measuring expression levels of IL-6 and endogenous NF-κB levels during lipopolysaccharide (LPS) exposure by using enzyme-linked immunosorbent assays (ELISA). Cell viability was measured by MTT and LDH assay, and Hsp70 expression levels were analyzed by Western blotting. ARPE-19 cells were transfected with hsp70 small interfering RNA (siRNA) in order to attenuate Hsp70 expression and activity of NF-κB RelA/p65 was measured using NF-κB consensus bound ELISA. Simultaneous exposures to LPS and celastrol reduced IL-6 expression levels as well as activity of phosphorylated NF-κB at serine 536 (Ser536) in ARPE-19 cells when compared to LPS exposure alone. In addition, inhibition of NF-κB RelA/p65 activity by celastrol was attenuated when Hsp70 response was silenced by siRNA. Favorable anti-inflammatory concentrations of celastrol showed no signs of cytotoxic response. Our findings reveal that celastrol is a novel plant compound which suppresses innate immunity response in human retinal pigment epithelial cells via NF-κB and Hsp70 regulation, and that Hsp70 is a critical regulator of NF-κB.


BioMed Research International | 2011

Influence of Hsp90 and HDAC inhibition and tubulin acetylation on perinuclear protein aggregation in human retinal pigment epithelial cells.

Tuomas Ryhänen; Johanna Viiri; Juha M.T. Hyttinen; Hannu Uusitalo; Antero Salminen; Kai Kaarniranta

Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration.


European Journal of Pharmacology | 2010

Influence of selective estrogen receptor modulators on interleukin-6 expression in human retinal pigment epithelial cells (ARPE-19)

Tuomas Paimela; Juha M.T. Hyttinen; Johanna Viiri; Tuomas Ryhänen; Matti K. Karvonen; Mikko Unkila; Hannu Uusitalo; Antero Salminen; Kai Kaarniranta

Since estrogen and selective estrogen receptor modulators can inhibit inflammatory responses, we studied the regulatory role of several selective estrogen receptor modulators on interleukin-6 (IL-6) expression in human retinal pigment epithelial cells (ARPE-19). ARPE-19 cells were exposed to lipopolysaccharide with simultaneous exposure to different selective estrogen receptor modulators with the secretion of IL-6 cytokine being analyzed by enzyme-linked immunosorbent assay (ELISA). We demonstrate that 17beta-estradiol and HM-D, a novel selective estrogen receptor modulator compound, clearly reduced the IL-6 expression levels after lipopolysaccharide exposure in ARPE-19 cells. Molecular effects of selective estrogen receptor modulators and estrogen on the estrogen response element-mediated transcription were studied using MCF-7 and ARPE-19 cell lines carrying the estrogen response element-luciferase reporter gene. Estrogen and HM-D stimulated the activity of estrogen response element-reporter gene in MCF-7 cells but did not affect the activity in ARPE-19 cells. In addition, HM-D did not activate estrogen receptor alpha when studied by nuclear receptor peptide estrogen receptor alpha ELISA in ARPE-19 cells. These results indicate that estrogen and HM-D can suppress the lipopolysaccharide-induced inflammatory response but signalling is not mediated through estrogen response element transcription in human retinal pigment epithelial cells.


International Journal of Molecular Sciences | 2017

Autophagy regulates proteasome inhibitor-induced pigmentation in human embryonic stem cell-derived retinal pigment epithelial cells

Kati Juuti-Uusitalo; Ali Koskela; Niko Kivinen; Johanna Viiri; Juha M.T. Hyttinen; Mika Reinisalo; Arto Koistinen; Hannu Uusitalo; Debasish Sinha; Heli Skottman; Kai Kaarniranta

The impairment of autophagic and proteasomal cleansing together with changes in pigmentation has been documented in retinal pigment epithelial (RPE) cell degeneration. However, the function and co-operation of these mechanisms in melanosome-containing RPE cells is still unclear. We show that inhibition of proteasomal degradation with MG-132 or autophagy with bafilomycin A1 increased the accumulation of premelanosomes and autophagic structures in human embryonic stem cell (hESC)-derived RPE cells. Consequently, upregulation of the autophagy marker p62 (also known as sequestosome-1, SQSTM1) was confirmed in Western blot and perinuclear staining. Interestingly, cells treated with the adenosine monophosphatedependent protein kinase activator, AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), decreased the proteasome inhibitor-induced accumulation of premelanosomes, increased the amount of autophagosomes and eradicated the protein expression of p62 and LC3 (microtubule-associated protein 1A/1B-light chain 3). These results revealed that autophagic machinery is functional in hESC-RPE cells and may regulate cellular pigmentation with proteasomes.


Cellular and Molecular Life Sciences | 2018

Mitochondrial quality control in AMD: does mitophagy play a pivotal role?

Juha M.T. Hyttinen; Johanna Viiri; Kai Kaarniranta; Janusz Blasiak

Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle’s homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.


Histology and Histopathology | 2015

A novel proteotoxic stress associated mechanism for macular corneal dystrophy

Kai Kaarniranta; Eszter Szalai; A Smedowski; Zoltán Hegyi; Niko Kivinen; Johanna Viiri; Bogumil Wowra; Dariusz Dobrowolski; László Módis; András Berta; Edward Wylegala; Szabolcs Felszeghy

Macular corneal dystrophy is a rare autosomal recessive eye disease affecting primarily the corneal stroma. Abnormal accumulation of proteoglycan aggregates has been observed intra- and extracellularly in the stromal layer. In addition to the stromal keratocytes and corneal lamellae, deposits are also present in the basal epithelial cells, endothelial cells and Descemets membrane. Misfolding of proteins has a tendency to gather into aggregating deposits. We studied interaction of molecular chaperones and proteasomal clearance in macular dystrophy human samples and in human corneal HCE-2 epithelial cells. Seven cases of macular corneal dystrophy and four normal corneal buttons collected during corneal transplantation were examined for their expression patterns of heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62. In response to proteasome inhibition the same proteins were analyzed by western blotting. Slit-lamp examination, in vivo confocal cornea microscopy and transmission electron microscopy were used for morphological analyses. Heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62 were upregulated in both the basal corneal epithelial cells and the stromal keratocytes in macular corneal dystrophy samples that coincided with an increased expression of the same molecules under proteasome inhibition in the HCE-2 cells in vitro. We propose a novel regulatory mechanism that connects the molecular chaperone and proteasomal clearance system in the pathogenesis of macular corneal dystrophy.

Collaboration


Dive into the Johanna Viiri's collaboration.

Top Co-Authors

Avatar

Kai Kaarniranta

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Juha M.T. Hyttinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Antero Salminen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tuomas Ryhänen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Niko Kivinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tuomas Paimela

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ali Koskela

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge