Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Andries Roubos is active.

Publication


Featured researches published by Johannes Andries Roubos.


Nature Biotechnology | 2007

Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

Herman Jan Pel; Johannes H. de Winde; David B. Archer; Paul S. Dyer; Gerald Hofmann; Peter J. Schaap; Geoffrey Turner; Ronald P. de Vries; Richard Albang; Kaj Albermann; Mikael Rørdam Andersen; Jannick Dyrløv Bendtsen; Jacques A. E. Benen; Marco van den Berg; Stefaan Breestraat; Mark X. Caddick; Roland Contreras; Michael Cornell; Pedro M. Coutinho; Etienne Danchin; Alfons J. M. Debets; Peter Dekker; Piet W.M. van Dijck; Alard Van Dijk; Lubbert Dijkhuizen; Arnold J. M. Driessen; Christophe d'Enfert; Steven Geysens; Coenie Goosen; Gert S.P. Groot

The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.


Nature Biotechnology | 2008

Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum

Marco van den Berg; Richard Albang; Kaj Albermann; Jonathan H. Badger; Jean-Marc Daran; Arnold J. M. Driessen; Carlos García-Estrada; Natalie D. Fedorova; Diana M. Harris; Wilbert H. M. Heijne; Vinita Joardar; Jan A. K. W. Kiel; Andriy Kovalchuk; Juan F. Martín; William C. Nierman; Jeroen G. Nijland; Jack T. Pronk; Johannes Andries Roubos; Ida J. van der Klei; Noël N. M. E. van Peij; Marten Veenhuis; Hans von Döhren; Christian Wagner; Jennifer R. Wortman; Roel A. L. Bovenberg

Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and α-aminoadipic acid—precursors for penicillin biosynthesis—as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling β-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.


Genome Research | 2011

Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

Mikael Rørdam Andersen; Margarita Salazar; Peter J. Schaap; Peter J. I. van de Vondervoort; David E. Culley; Jette Thykaer; Jens Christian Frisvad; Kristian Fog Nielsen; Richard Albang; Kaj Albermann; Randy M. Berka; Gerhard H. Braus; Susanna A. Braus-Stromeyer; Luis M. Corrochano; Piet W.M. van Dijck; Gerald Hofmann; Linda L. Lasure; Jon K. Magnuson; Hildegard Menke; Martin Meijer; Susan Lisette Meijer; Jakob Blæsbjerg Nielsen; Michael Lynge Nielsen; Albert J.J. van Ooyen; Herman Jan Pel; Lars Kongsbak Poulsen; R.A. Samson; Hein Stam; Adrian Tsang; Johannes Maarten Van Den Brink

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.


Fungal Genetics and Biology | 2009

Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics

Denise I. Jacobs; Maurien Olsthoorn; Isabelle Maillet; Michiel Akeroyd; Stefaan Breestraat; Serge Petrus Donkers; Rob van der Hoeven; Cees A. M. J. J. van den Hondel; Rolf Kooistra; Thomas Lapointe; Hildegard Menke; Rogier Meulenberg; Marijke Misset; Wally H. Müller; Noël N. M. E. van Peij; Arthur F. J. Ram; Sabrina Rodriguez; Marc S. Roelofs; Johannes Andries Roubos; Marcel van Tilborg; Arie J. Verkleij; Herman Jan Pel; Hein Stam; C. Sagt

The filamentous fungus Aspergillus niger is widely exploited for industrial production of enzymes and organic acids. An integrated genomics approach was developed to determine cellular responses of A. niger to protein production in well-controlled fermentations. Different protein extraction methods in combination with automated sample processing and protein identification allowed quantitative analysis of 898 proteins. Three different enzyme overproducing strains were compared to their isogenic fungal host strains. Clear differences in response to the amount and nature of the overproduced enzymes were observed. The corresponding genes of the differentially expressed proteins were studied using transcriptomics. Genes that were up-regulated both at the proteome and transcriptome level were selected as leads for generic strain improvement. Up-regulated proteins included proteins involved in carbon and nitrogen metabolism as well as (oxidative) stress response, and proteins involved in protein folding and endoplasmic reticulum-associated degradation (ERAD). Reduction of protein degradation through the removal of the ERAD factor doaA combined with overexpression of the oligosaccharyl transferase sttC in A. niger overproducing beta-glucuronidase (GUS) strains indeed resulted in a small increase in GUS expression.


Molecular Genetics and Genomics | 2008

Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger

Xiao Lian Yuan; Johannes Andries Roubos; Cees A. M. J. J. van den Hondel; Arthur F. J. Ram

The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.


ACS Synthetic Biology | 2012

Genetic circuit performance under conditions relevant for industrial bioreactors.

Felix Moser; Nicolette Jasmijn Broers; Sybe Hartmans; Alvin Tamsir; Richard Kerkman; Johannes Andries Roubos; Roel A. L. Bovenberg; Christopher A. Voigt

Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli under industrially relevant conditions, including the selection of media, strain, and growth rate. We test and compare two transcriptional circuits: an AND and a NOR gate. In E. coli DH10B, the AND gate is inactive in minimal media; activity can be rescued by supplementing the media and transferring the gate into the industrial strain E. coli DS68637 where normal function is observed in minimal media. In contrast, the NOR gate is robust to media composition and functions similarly in both strains. The AND gate is evaluated at three stages of early scale-up: 100 mL shake flask experiments, a 1 mL MTP microreactor, and a 10 L bioreactor. A reference plasmid that constitutively produces a GFP reporter is used to make comparisons of circuit performance across conditions. The AND gate function is quantitatively different at each scale. The output deteriorates late in fermentation after the shift from exponential to constant feed rates, which induces rapid resource depletion and changes in growth rate. In addition, one of the output states of the AND gate failed in the bioreactor, effectively making it only responsive to a single input. Finally, cells carrying the AND gate show considerably less accumulation of biomass. Overall, these results highlight challenges and suggest modified strategies for developing and characterizing genetic circuits that function reliably during fermentation.


Nucleic Acids Research | 2015

Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate

Thomas E. Gorochowski; Zoya Ignatova; Roel A. L. Bovenberg; Johannes Andries Roubos

Translation of protein from mRNA is a complex multi-step process that occurs at a non-uniform rate. Variability in ribosome speed along an mRNA enables refinement of the proteome and plays a critical role in protein biogenesis. Detailed single protein studies have found both tRNA abundance and mRNA secondary structure as key modulators of translation elongation rate, but recent genome-wide ribosome profiling experiments have not observed significant influence of either on translation efficiency. Here we provide evidence that this results from an inherent trade-off between these factors. We find codons pairing to high-abundance tRNAs are preferentially used in regions of high secondary structure content, while codons read by significantly less abundant tRNAs are located in lowly structured regions. By considering long stretches of high and low mRNA secondary structure in Saccharomyces cerevisiae and Escherichia coli and comparing them to randomized-gene models and experimental expression data, we were able to distinguish clear selective pressures and increased protein expression for specific codon choices. The trade-off between secondary structure and tRNA-concentration based codon choice allows for compensation of their independent effects on translation, helping to smooth overall translational speed and reducing the chance of potentially detrimental points of excessively slow or fast ribosome movement.


Nucleic Acids Research | 2015

Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor

Hui Zhou; Brenda Vonk; Johannes Andries Roubos; Roel A. L. Bovenberg; Christopher A. Voigt

Optimizing bio-production involves strain and process improvements performed as discrete steps. However, environment impacts genotype and a strain that is optimal under one set of conditions may not be under different conditions. We present a methodology to simultaneously vary genetic and process factors, so that both can be guided by design of experiments (DOE). Advances in DNA assembly and gene insulation facilitate this approach by accelerating multi-gene pathway construction and the statistical interpretation of screening data. This is applied to a 6-aminocaproic acid (6-ACA) pathway in Escherichia coli consisting of six heterologous enzymes. A 32-member fraction factorial library is designed that simultaneously perturbs expression and media composition. This is compared to a 64-member full factorial library just varying expression (0.64 Mb of DNA assembly). Statistical analysis of the screening data from these libraries leads to different predictions as to whether the expression of enzymes needs to increase or decrease. Therefore, if genotype and media were varied separately this would lead to a suboptimal combination. This is applied to the design of a strain and media composition that increases 6-ACA from 9 to 48 mg/l in a single optimization step. This work introduces a generalizable platform to co-optimize genetic and non-genetic factors.


Fungal Genetics and Biology | 2010

The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp.

Andrew Plumridge; Petter Melin; Malcolm Stratford; Michaela Novodvorska; Lee Shunburne; Paul S. Dyer; Johannes Andries Roubos; Hildegard Menke; Jacques Stark; Hein Stam; David B. Archer

The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid.


ACS Synthetic Biology | 2016

A Minimal Model of Ribosome Allocation Dynamics Captures Trade-offs in Expression between Endogenous and Synthetic Genes

Thomas E. Gorochowski; Irem Avcilar-Kucukgoze; Roel A. L. Bovenberg; Johannes Andries Roubos; Zoya Ignatova

Cells contain a finite set of resources that must be distributed across many processes to ensure survival. Among them, the largest proportion of cellular resources is dedicated to protein translation. Synthetic biology often exploits these resources in executing orthogonal genetic circuits, yet the burden this places on the cell is rarely considered. Here, we develop a minimal model of ribosome allocation dynamics capturing the demands on translation when expressing a synthetic construct together with endogenous genes required for the maintenance of cell physiology. Critically, it contains three key variables related to design parameters of the synthetic construct covering transcript abundance, translation initiation rate, and elongation time. We show that model-predicted changes in ribosome allocation closely match experimental shifts in synthetic protein expression rate and cellular growth. Intriguingly, the model is also able to accurately infer transcript levels and translation times after further exposure to additional ambient stress. Our results demonstrate that a simple model of resource allocation faithfully captures the redistribution of protein synthesis resources when faced with the burden of synthetic gene expression and environmental stress. The tractable nature of the model makes it a versatile tool for exploring the guiding principles of efficient heterologous expression and the indirect interactions that can arise between synthetic circuits and their host chassis because of competition for shared translational resources.

Researchain Logo
Decentralizing Knowledge