Johannes B. Huppa
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes B. Huppa.
Nature Immunology | 2010
Björn F. Lillemeier; Manuel Mörtelmaier; Martin B Forstner; Johannes B. Huppa; Jay T. Groves; Mark M. Davis
The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane–associated signal transduction.
Nature Reviews Immunology | 2003
Johannes B. Huppa; Mark M. Davis
Much excitement of the past five years in the area of T-cell-antigen recognition has centred around the immunological synapse — a complex cellular structure that forms at the interface of a T cell and a cell that expresses the appropriate peptide–MHC complexes. Thanks to new imaging technologies, we are now beginning to understand the role of cell-surface molecules and some of their attendant signalling modules in the context of cell-to-cell communication. Progress has been so rapid that T-cell-antigen recognition might be the first system in which the molecular basis of cell–cell recognition is understood.
Nature Immunology | 2003
Johannes B. Huppa; Michael Gleimer; Cenk Sumen; Mark M. Davis
Although signals through the T cell receptor (TCR) are essential for the initiation of T helper cell activation, it is unclear what function such signals have during the prolonged T cell–antigen-presenting cell contact. Here we simultaneously tracked TCR-CD3 complex and phosphoinositide 3-kinase activity in single T cells using three-dimensional video microscopy. Despite rapid internalization of most of the TCR-CD3, TCR-dependant signaling was still evident up to 10 h after conjugate formation. Blocking this interaction caused dissolution of the synapse and proportional reductions in interleukin 2 production and cellular proliferation. Thus TCR signaling persists for hours, has a cumulative effect and is necessary for the maintenance of the immunological synapse.
Nature | 2010
Johannes B. Huppa; Markus Axmann; Manuel Mörtelmaier; Björn F. Lillemeier; Evan W. Newell; Mario Brameshuber; Lawrence O. Klein; Gerhard J. Schütz; Mark M. Davis
The recognition of foreign antigens by T lymphocytes is essential to most adaptive immune responses. It is driven by specific T-cell antigen receptors (TCRs) binding to antigenic peptide–major histocompatibility complex (pMHC) molecules on other cells. If productive, these interactions promote the formation of an immunological synapse. Here we show that synaptic TCR–pMHC binding dynamics differ significantly from TCR–pMHC binding in solution. We used single-molecule microscopy and fluorescence resonance energy transfer (FRET) between fluorescently tagged TCRs and their cognate pMHC ligands to measure the kinetics of TCR–pMHC binding in situ. When compared with solution measurements, the dissociation of this complex was increased significantly (4–12-fold). Disruption of actin polymers reversed this effect, indicating that cytoskeletal dynamics destabilize this interaction directly or indirectly. Nevertheless, TCR affinity for pMHC was significantly elevated as the result of a large (about 100-fold) increase in the association rate, a likely consequence of complementary molecular orientation and clustering. In helper T cells, the CD4 molecule has been proposed to bind cooperatively with the TCR to the same pMHC complex. However, CD4 blockade had no effect on the synaptic TCR affinity, nor did it destabilize TCR–pMHC complexes, indicating that the TCR binds pMHC independently of CD4.
Nature | 2005
Michelle Krogsgaard; Qi-Jing Li; Cenk Sumen; Johannes B. Huppa; Morgan Huse; Mark M. Davis
αβ T lymphocytes are able to detect even a single peptide–major histocompatibility complex (MHC) on the surface of an antigen-presenting cell. This is despite clear evidence, at least with CD4+ T cells, that monomeric ligands are not stimulatory. In an effort to understand how this remarkable sensitivity is achieved, we constructed soluble peptide–MHC heterodimers in which one peptide is an agonist and the other is one of the large number of endogenous peptide–MHCs displayed by presenting cells. We found that some specific combinations of these heterodimers can stimulate specific T cells in a CD4-dependent manner. This activation is severely impaired if the CD4-binding site on the agonist ligand is ablated, but the same mutation on an endogenous ligand has no effect. These data correlate well with analyses of lipid bilayers and cells presenting these ligands, and indicate that the basic unit of helper T cell activation is a heterodimer of agonist peptide– and endogenous peptide–MHC complexes, stabilized by CD4.
Nature Immunology | 2004
Qi-Jing Li; Aaron R. Dinner; Shuyan Qi; Darrell J. Irvine; Johannes B. Huppa; Mark M. Davis; Arup K. Chakraborty
How T cells respond with extraordinary sensitivity to minute amounts of agonist peptide and major histocompatibility complex (pMHC) molecules on the surface of antigen-presenting cells bearing large numbers of endogenous pMHC molecules is not understood. Here we present evidence that CD4 affects the responsiveness of T helper cells by controlling spatial localization of the tyrosine kinase Lck in the synapse. This finding, as well as further in silico and in vitro experiments, led us to develop a molecular model in which endogenous and agonist pMHC molecules act cooperatively to amplify T cell receptor signaling. At the same time, activation due to endogenous pMHC molecules alone is inhibited. A key feature is that the binding of agonist pMHC molecules to the T cell receptor results in CD4-mediated spatial localization of Lck, which in turn enables endogenous pMHC molecules to trigger many T cell receptors. We also discuss broader implications for T cell biology, including thymic selection, diversity of the repertoire of self pMHC molecules and serial triggering.
Nature Immunology | 2013
Clifford S. Guy; Kate M. Vignali; Jamshid Temirov; Matthew L. Bettini; Abigail E. Overacre; Matthew P. Smeltzer; Hui Zhang; Johannes B. Huppa; Yu Hwai Tsai; Camille Lobry; Jianming Xie; Peter J. Dempsey; Howard C. Crawford; Iannis Aifantis; Mark M. Davis; Dario A. A. Vignali
The physiological basis and mechanistic requirements for a large number of functional immunoreceptor tyrosine-based activation motifs (ITAMs; high ITAM multiplicity) in the complex of the T cell antigen receptor (TCR) and the invariant signaling protein CD3 remain obscure. Here we found that whereas a low multiplicity of TCR-CD3 ITAMs was sufficient to engage canonical TCR-induced signaling events that led to cytokine secretion, a high multiplicity of TCR-CD3 ITAMs was required for TCR-driven proliferation. This was dependent on the formation of compact immunological synapses, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate the recruitment and activation of the oncogenic transcription factor Notch1 and, ultimately, proliferation induced by the cell-cycle regulator c-Myc. Analogous mechanistic events were also needed to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and are coordinated by the multiplicity of phosphorylated ITAMs in TCR-CD3.
Journal of Immunology | 2003
Michelle R. Kuhne; Joseph Lin; Deborah Yablonski; Marianne Mollenauer; Lauren I. R. Ehrlich; Johannes B. Huppa; Mark M. Davis; Arthur Weiss
Engagement of the T cell with Ag on an APC results in a series of immediate signaling events emanating from the stimulation of the TCR. These events include the induced phosphorylation of a number of cellular proteins with a subsequent increase in intracellular calcium and the restructuring of the microtubule and actin cytoskeleton within the T cell. This restructuring of the cytoskeleton culminates in the polarization of the T cell’s secretory apparatus toward the engaging APC, allowing the T cell to direct secretion of cytokines toward the appropriate APC. This polarization can be monitored by analyzing the position of the microtubule-organizing center (MTOC), as it moves toward the interface of the T cell and APC. The requirements for MTOC polarization were examined at a single-cell level by studying the interaction of a Jurkat cell line expressing a fluorescently labeled MTOC with Staphylococcal enterotoxin superantigen-bound Raji B cell line, which served as the APC. We found that repolarization of the MTOC substantially followed fluxes in calcium. We also used immobilized anti-TCR mAb and Jurkat signaling mutants, defective in TCR-induced calcium increases, to determine whether signaling components that are necessary for a calcium response also play a role in MTOC polarization. We found that ζ-associated protein-70 as well as its substrate adaptor proteins linker for activation of T cells and Src homology 2 domain-containing leukocyte protein-76 are required for MTOC polarization. Moreover, our studies revealed that a calcium-dependent event not requiring calcineurin or calcium/calmodulin-dependent kinase is required for TCR-induced polarization of the MTOC.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Michael S. Kuhns; Andrew T. Girvin; Lawrence O. Klein; Rebecca Chen; Kirk D. C. Jensen; Evan W. Newell; Johannes B. Huppa; Björn F. Lillemeier; Morgan Huse; Yueh-hsiu Chien; K. Christopher Garcia; Mark M. Davis
The T cell receptor (TCR) and associated CD3γε, δε, and ζζ signaling dimers allow T cells to discriminate between different antigens and respond accordingly, but our knowledge of how these parts fit and work together is incomplete. In this study, we provide additional evidence that the CD3 heterodimers congregate on one side of the TCR in both the αβ and γδTCR-CD3 complexes. We also report that the other side of the αβTCR mediates homotypic αβTCR interactions and signaling. Specifically, an erythropoietin receptor-based dimerization assay was used to show that, upon complex assembly, the CD3ε chains of two CD3 heterodimers are arranged side-by-side in both the αβ and γδTCR-CD3 complexes. This system was also used to show that αβTCRs can dimerize in the cell membrane and that mutating the unusual outer strands of the Cα domain impairs this dimerization. Finally, we present data showing that, for CD4 T cells, the mutations that impair αβTCR dimerization also alter ligand-induced calcium mobilization, TCR accumulation at the site of pMHC contact, and polarization toward the site of antigen contact. These data reveal a “functional-sidedness” to the αβTCR constant region, with dimerization occurring on the side of the TCR opposite from where the CD3 heterodimers are located.
Nature Immunology | 2016
Elisabeth Salzer; Deniz Cagdas; Miroslav Hons; Emily M. Mace; Wojciech Garncarz; Özlem Yüce Petronczki; René Platzer; Laurène Pfajfer; Ivan Bilic; Sol A. Ban; Katharina L. Willmann; Malini Mukherjee; Verena Supper; Hsiang Ting Hsu; Pinaki P. Banerjee; Papiya Sinha; Fabienne McClanahan; Gerhard J. Zlabinger; Winfried F. Pickl; John G. Gribben; Hannes Stockinger; Keiryn L. Bennett; Johannes B. Huppa; Loïc Dupré; Ozden Sanal; Ulrich Jäger; Michael Sixt; Ilhan Tezcan; Jordan S. Orange; Kaan Boztug
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.