Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Beeslaar is active.

Publication


Featured researches published by Johannes Beeslaar.


Lancet Infectious Diseases | 2012

Safety, immunogenicity, and tolerability of meningococcal serogroup B bivalent recombinant lipoprotein 2086 vaccine in healthy adolescents: a randomised, single-blind, placebo-controlled, phase 2 trial

Peter Richmond; Helen Marshall; Michael D. Nissen; Qin Jiang; Kathrin U. Jansen; Maria Garcés-Sánchez; Federico Martinón-Torres; Johannes Beeslaar; Leszek Szenborn; Jacek Wysocki; Joseph Eiden; Shannon L. Harris; Thomas R. Jones; John L. Perez

BACKGROUND Neisseria meningitidis serogroup B is a major cause of invasive meningococcal disease, but a broadly protective vaccine is not currently licensed. A bivalent recombinant factor H-binding protein vaccine (recombinant lipoprotein 2086) has been developed to provide broad coverage against diverse invasive meningococcus serogroup B strains. Our aim was to test the immune response of this vaccine. METHODS This randomised, placebo-controlled trial enrolled healthy adolescents from 25 sites in Australia, Poland, and Spain. Exclusion criteria were previous invasive meningococcal disease or serogroup B vaccination, previous adverse reaction or known hypersensitivity to the vaccine, any significant comorbidities, and immunosuppressive therapy or receipt of blood products in the past 6 months. Participants were randomly assigned with a computerised block randomisation scheme to receive ascending doses of vaccine (60, 120, or 200 μg) or placebo at 0, 2, and 6 months. Principal investigators, participants and their guardians, and laboratory personnel were masked to the allocation; dispensing staff were not. Immunogenicity was measured by serum bactericidal assays using human complement (hSBA) against eight diverse meningococcus serogroup B strains. The co-primary endpoints were seroconversion for the two indicator strains (PMB1745 and PMB17) analysed by the Clopper-Pearson method. Local and systemic reactions and adverse events were recorded. The study is registered at ClinicalTrials.gov, number NCT00808028. FINDINGS 539 participants were enrolled and 511 received all three study vaccinations--116 in the placebo group, 21 in the 60 μg group, 191 in the 120 μg group, and 183 in the 200 μg group. The proportion of participants responding with an hSBA titre equal to or greater than the lower limit of quantitation of the hSBA assays (reciprcocal titres of 7 to 18, depending on test strain) was similar for the two largest doses and ranged from 75·6 to 100·0% for the 120 μg dose and 67·9 to 99·0% for the 200 μg dose. Seroconversion for the PMB1745 reference strain was 17 of 19 (89·5%) participants for the 60 μg dose, 103 of 111 (92·8%) participants for the 120 μg dose, 94 of 100 (94·0%) participants for the 200 μg dose, and four of 73 (5·5%) participants for placebo. For the PMB17 reference strain seroconversion was 17 of 21 (81·0%) participants for the 60 μg dose, 97 of 112 (86·6%) participants for the 120 μg dose, 89 of 105 (84·8%) participants for the 200 μg dose, and one of 79 (1·3%) participants for placebo. The hSBA response was robust as shown by the high proportion of responders at hSBA titres up to 16. Mild-to-moderate injection site pain was the most common local reaction (50 occurrences with the 60 μg dose, 437 with the 120 μg dose, 464 with the 200 μg dose, and 54 with placebo). Systemic events, including fatigue and headache, were generally mild to moderate. Overall, adverse events were reported by 18 participants (81·8%) in the 60 μg group, 77 (38·9%) in the 120 μg group, 92 (47·2%) in the 200 μg group, and 54 (44·6%) in the placebo group. Fevers were rare and generally mild (one in the 60 μg group, 24 in the 120 μg group, 35 in the 200 μg group, and five in the placebo group; range, 0-6·3% after each dose). Incidence and severity of fever did not increase with subsequent vaccine dose within groups. One related serious adverse event that resolved without sequelae occurred after the third dose (200 μg). INTERPRETATION The bivalent recombinant lipoprotein 2086 vaccine is immunogenic and induces robust hSBA activity against diverse invasive meningococcus serogroup B disease strains and the vaccine is well tolerated. Recombinant lipoprotein 2086 vaccine is a promising candidate for broad protection against invasive meningococcus serogroup B disease. FUNDING Wyeth, Pfizer.


Journal of the Pediatric Infectious Diseases Society | 2016

Meningococcal Serogroup B Bivalent rLP2086 Vaccine Elicits Broad and Robust Serum Bactericidal Responses in Healthy Adolescents.

Timo Vesikari; Lars Østergaard; Javier Díez-Domingo; Jacek Wysocki; Carl-Erik Flodmark; Johannes Beeslaar; Joseph Eiden; Qin Jiang; Kathrin U. Jansen; Thomas R. Jones; Shannon L. Harris; Robert E. O'Neill; Laura J. York; Graham Crowther; John L. Perez

Background Neisseria meningitidis serogroup B (MnB) is a leading cause of invasive meningococcal disease in adolescents and young adults. A recombinant factor H binding protein (fHBP) vaccine (Trumenba®; bivalent rLP2086) was recently approved in the United States in individuals aged 10–25 years. Immunogenicity and safety of 2- or 3-dose schedules of bivalent rLP2086 were assessed in adolescents. Methods Healthy adolescents (11 to <19 years) were randomized to 1 of 5 bivalent rLP2086 dosing regimens (0,1,6-month; 0,2,6-month; 0,2-month; 0,4-month; 0,6-month). Immunogenicity was assessed by serum bactericidal antibody assay using human complement (hSBA). Safety assessments included local and systemic reactions and adverse events. Results Bivalent rLP2086 was immunogenic when administered as 2 or 3 doses; the most robust hSBA responses occurred with 3 doses. The proportion of subjects with hSBA titers ≥1:8 after 3 doses ranged from 91.7% to 95.0%, 98.9% to 99.4%, 88.4% to 89.0%, and 86.1% to 88.5% for MnB test strains expressing vaccine-heterologous fHBP variants A22, A56, B24, and B44, respectively. After 2 doses, responses ranged from 90.8% to 93.5%, 98.4% to 100%, 69.1% to 81.1%, and 70.1% to 77.5%. Geometric mean titers (GMTs) were highest among subjects receiving 3 doses and similar between the 2- and 3-dose regimens. After 2 doses, GMTs trended numerically higher among subjects with longer intervals between the first and second dose (6 months vs 2 and 4 months). Bivalent rLP2086 was well tolerated. Conclusions Bivalent rLP2086 was immunogenic and well tolerated when administered in 2 or 3 doses. Three doses yielded the most robust hSBA response rates against MnB strains expressing vaccine-heterologous subfamily B fHBPs.


Journal of the Pediatric Infectious Diseases Society | 2016

Immunogenicity, Safety, and Tolerability of Bivalent rLP2086 Meningococcal Group B Vaccine Administered Concomitantly With Diphtheria, Tetanus, and Acellular Pertussis and Inactivated Poliomyelitis Vaccines to Healthy Adolescents

Timo Vesikari; Jacek Wysocki; Johannes Beeslaar; Joseph Eiden; Qin Jiang; Kathrin U. Jansen; Thomas R. Jones; Shannon L. Harris; Robert E. O'Neill; Laura J. York; John L. Perez

Key points Concomitant administration of bivalent rLP2086 (Trumenba [Pfizer, Inc] and diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine (DTaP/IPV) was immunologically noninferior to DTaP/IPV and saline and was safe and well tolerated. Bivalent rLP2086 elicited robust and broad bactericidal antibody responses to diverse Neisseria meningitidis serogroup B strains expressing antigens heterologous to vaccine antigens after 2 and 3 vaccinations. Background Bivalent rLP2086, a Neisseria meningitidis serogroup B (MnB) vaccine (Trumenba [Pfizer, Inc]) recently approved in the United States to prevent invasive MnB disease in individuals aged 10–25 years, contains recombinant subfamily A and B factor H binding proteins (fHBPs). This study evaluated the coadministration of Repevax (diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine [DTaP/IPV]) (Sanofi Pasteur MSD, Ltd) and bivalent rLP2086. Methods Healthy adolescents aged ≥11 to <19 years received bivalent rLP2086 + DTaP/IPV or saline + DTaP/IPV at month 0 and bivalent rLP2086 or saline at months 2 and 6. The primary end point was the proportion of participants in whom prespecified levels of antibodies to DTaP/IPV were achieved 1 month after DTaP/IPV administration. Immune responses to bivalent rLP2086 were measured with serum bactericidal assays using human complement (hSBAs) against 4 MnB test strains expressing fHBP subfamily A or B proteins different from the vaccine antigens. Results Participants were randomly assigned to receive bivalent rLP2086 + DTaP/IPV (n = 373) or saline + DTaP/IPV (n = 376). Immune responses to DTaP/IPV in participants who received bivalent rLP2086 + DTaP/IPV were noninferior to those in participants who received saline + DTaP/IPV. The proportions of bivalent rLP2086 + DTaP/IPV recipients with prespecified seroprotective hSBA titers to the 4 MnB test strains were 55.5%–97.3% after vaccination 2 and 81.5%–100% after vaccination 3. The administration of bivalent rLP2086 was well tolerated and resulted in few serious adverse events. Conclusions Immune responses to DTaP/IPV administered with bivalent rLP2086 to adolescents were noninferior to DTaP/IPV administered alone. Bivalent rLP2086 was well tolerated and elicited substantial and broad bactericidal responses to diverse MnB strains in a high proportion of recipients after 2 vaccinations, and these responses were further enhanced after 3 vaccinations. ClinicalTrials.gov identifier NCT01323270


Lancet Infectious Diseases | 2017

Meningococcal serogroup B-specific responses after vaccination with bivalent rLP2086: 4 year follow-up of a randomised, single-blind, placebo-controlled, phase 2 trial

Helen Marshall; Peter Richmond; Johannes Beeslaar; Qin Jiang; Kathrin U. Jansen; Maria Garcés-Sánchez; Federico Martinón-Torres; Leszek Szenborn; Jacek Wysocki; Joseph Eiden; Shannon L. Harris; Thomas R. Jones; Su-San Lee; John L. Perez

BACKGROUND Bivalent rLP2086 is a recombinant factor H binding protein-based vaccine approved in the USA for prevention of meningococcal serogroup B disease in 10-25-year-olds. We aimed to assess the persistence of bactericidal antibodies up to 4 years after a three-dose schedule of bivalent rLP2086. METHODS We did this randomised, single-blind, placebo-controlled, phase 2 trial at 25 sites in Australia, Poland, and Spain. In stage 1 of the study (February, 2009-May, 2010), healthy adolescents (aged 11-18 years) were randomly assigned, via an interactive voice and web-response system with computer-generated sequential random numbers, to receive either ascending doses of vaccine (60 μg, 120 μg, and 200 μg) or placebo at months 0, 2, and 6. Dispensing staff were not masked to group allocation, but allocation was concealed from principal investigators, participants and their guardians, and laboratory personnel. In stage 2 of the study (reported here), we enrolled healthy adolescents who had received three doses of 120 μg bivalent rLP2086 (the optimum dose level identified in stage 1) or saline. Immunogenicity was determined in serum bactericidal antibody assay using human complement (hSBA) by use of four meningococcal serogroup B test strains expressing vaccine-heterologous factor H binding protein variants: PMB80 (A22), PMB2001 (A56), PMB2948 (B24), and PMB2707 (B44). Immunogenicity in stage 2 was assessed at months 6, 12, 24, and 48 post-vaccination. We did analysis by intention to treat. This trial is registered as ClinicalTrials.gov number NCT00808028. FINDINGS Between March 17, 2010, and Feb 8, 2011, 170 participants who received 120 μg of bivalent rLP2086 and 80 participants who received placebo in stage 1 of the study were entered into stage 2; 210 participants completed stage 2 up to 48 months. 1 month after the third vaccination, 93% (n=139/149) to 100% (n=48/48) of vaccine recipients achieved protective hSBA titres equal to or greater than the lower limit of quantification to each test strain, compared with 0% (n=0/25) to 35% (n=8/23) of control recipients. Despite initial declines in seroprotective hSBA titres for all four test strains, for three test strains (A22, A56, and B24), more than 50% of bivalent rLP2086 recipients continued to achieve titres equal to or greater than the lower limit of quantification at months 6 (57% [n=93/163] to 89% [n=42/47]), 12 (54% [n=84/155] to 69% [n=33/48]), 24 (53% [n=26/49] to 54% [n=82/152]), and 48 (51% [n=24/47] to 59% [n=79/134]); corresponding values in the control group were 14% (n=11/80) to 22% (n=5/23) at month 6, 13% (n=10/78) to 29% (n=22/76) at month 12, 16% (n=12/74) to 36% (n=8/22) at month 24, and 24% (n=16/68) to 35% (n=8/23) at month 48. For test strain B44, hSBA titres equal to or greater than the lower limit of quantification were shown in 37% (n=18/49) of vaccine recipients at 6 months, in 29% (n=14/48) at 12 months, in 22% (n=11/49) at 24 months, and in 20% (n=10/49) at 48 months, compared with 0% (n=0/25) of control recipients at month 6, 4% (n=1/25) at months 12 and 24, and 12% (n=3/25) at month 48. Adverse events were reported in seven (4%) of 170 participants in the bivalent rLP2086 group and two (3%) of 80 participants in the control group; no event was deemed related to vaccine. INTERPRETATION After three doses of bivalent rLP2086, protective hSBA titres above the correlate of protection (≥1/4) were elicited up to 4 years in more than 50% of participants for three of four meningococcal serogroup B test strains representative of disease-causing meningococci expressing vaccine-heterologous antigens. Further studies will be needed to assess possible herd immunity effects with meningococcal serogroup B vaccines and the need for a booster dose to sustain individual protection against invasive meningococcal disease. FUNDING Pfizer.


Vaccine | 2016

A phase 3, randomized, active-controlled study to assess the safety and tolerability of meningococcal serogroup B vaccine bivalent rLP2086 in healthy adolescents and young adults☆

Lars Østergaard; Gregg H. Lucksinger; Judith Absalon; Johannes Beeslaar; Joseph Eiden; Kathrin U. Jansen; Laura J. York; Angela Quinn; Mette Elneff Graversen; John L. Perez

BACKGROUND Neisseria meningitidis serogroup B (MnB) is an important cause of invasive meningococcal disease (IMD). A MnB vaccine (bivalent rLP2086, Trumenba(®)) consisting of 2 factor H binding protein variants received accelerated approval in the United States for the prevention of IMD caused by MnB in individuals 10-25 years of age. This randomized, active-controlled, observer-blind study further assessed the safety and tolerability of bivalent rLP2086. METHODS Eligible subjects ≥ 10 to < 26 years were randomized (2:1) to receive bivalent rLP2086 at months 0, 2, and 6, or hepatitis A virus vaccine (HAV, Havrix(®)) at months 0 and 6, and saline at month 2. The primary endpoints were serious adverse events (SAEs) throughout the study and medically-attended adverse events (MAEs) within 30 days after vaccination. Additional safety assessments included SAEs at other study intervals and adverse events (AEs) during the vaccination phase. RESULTS Of 5712 subjects randomized, 84.6% (n = 3219) of bivalent rLP2086 recipients and 87.2% (n = 1663) of HAV/saline recipients completed the study. Throughout the study, SAEs were reported for 1.6% and 2.5% of bivalent rLP2086 and HAV/saline recipients, respectively. SAEs related to either vaccine were rare. MAEs occurred in 7.0% and 6.1% of subjects after vaccination 1; 5.5% and 6.1% after vaccination 2; and 5.3% and 5.5% after vaccination 3 in the bivalent rLP2086 and HAV/saline groups, respectively. A greater proportion of subjects reported AEs during the vaccination phase after bivalent rLP2086 compared with HAV/saline recipients; however, when reactogenicity events were excluded, the proportion between groups was similar. CONCLUSION This safety study, the largest randomized, active-controlled trial evaluating a recombinant MnB vaccine, demonstrated that bivalent rLP2086 is safe and tolerable in healthy individuals ≥ 10 to < 26 years of age.


The New England Journal of Medicine | 2017

A Bivalent Meningococcal B Vaccine in Adolescents and Young Adults

Lars Østergaard; Timo Vesikari; Judith Absalon; Johannes Beeslaar; Brian J. Ward; Shelly Senders; Joseph Eiden; Kathrin U. Jansen; Annaliesa S. Anderson; Laura J. York; Thomas R. Jones; Shannon L. Harris; Robert E. O’Neill; David Radley; Roger Maansson; Jean-Louis Prégaldien; John Ginis; Nina Breinholt Staerke; John L. Perez

BACKGROUND MenB‐FHbp is a licensed meningococcal B vaccine targeting factor H–binding protein. Two phase 3 studies assessed the safety of the vaccine and its immunogenicity against diverse strains of group B meningococcus. METHODS We randomly assigned 3596 adolescents (10 to 18 years of age) to receive MenB‐FHbp or hepatitis A virus vaccine and saline and assigned 3304 young adults (18 to 25 years of age) to receive MenB‐FHbp or saline at baseline, 2 months, and 6 months. Immunogenicity was assessed in serum bactericidal assays that included human complement (hSBAs). We used 14 meningococcal B test strains that expressed vaccine‐heterologous factor H–binding proteins representative of meningococcal B epidemiologic diversity; an hSBA titer of at least 1:4 is the accepted correlate of protection. The five primary end points were the proportion of participants who had an increase in their hSBA titer for each of 4 primary strains by a factor of 4 or more and the proportion of those who had an hSBA titer at least as high as the lower limit of quantitation (1:8 or 1:16) for all 4 strains combined after dose 3. We also assessed the hSBA responses to the primary strains after dose 2; hSBA responses to the 10 additional strains after doses 2 and 3 were assessed in a subgroup of participants only. Safety was assessed in participants who received at least one dose. RESULTS In the modified intention‐to‐treat population, the percentage of adolescents who had an increase in the hSBA titer by a factor of 4 or more against each primary strain ranged from 56.0 to 85.3% after dose 2 and from 78.8 to 90.2% after dose 3; the percentages of young adults ranged from 54.6 to 85.6% and 78.9 to 89.7%, after doses 2 and 3, respectively. Composite responses after doses 2 and 3 in adolescents were 53.7% and 82.7%, respectively, and those in young adults were 63.3% and 84.5%, respectively. Responses to the 4 primary strains were predictive of responses to the 10 additional strains. Most of those who received MenB‐FHbp reported mild or moderate pain at the vaccination site. CONCLUSIONS MenB‐FHbp elicited bactericidal responses against diverse meningococcal B strains after doses 2 and 3 and was associated with more reactions at the injection site than the hepatitis A virus vaccine and saline. (Funded by Pfizer; ClinicalTrials.gov numbers, NCT01830855 and NCT01352845).


Vaccine | 2018

Clinical data supporting a 2-dose schedule of MenB-FHbp, a bivalent meningococcal serogroup B vaccine, in adolescents and young adults

Johannes Beeslaar; Judith Absalon; Paul Balmer; Amit Srivastava; Roger Maansson; Laura J. York; John L. Perez

Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is a potentially devastating condition that can result in death and is associated with serious long-term sequelae in survivors. Vaccination is the preferred preventative strategy. Quadrivalent polysaccharide-based vaccines that protect against infection caused by meningococcal serogroups A, C, W, and Y are not effective against meningococcal serogroup B (MenB), which was responsible for approximately 60% and 35% of confirmed IMD cases in the European Union and the United States in 2016, respectively. A recombinant protein MenB vaccine (MenB-FHbp [bivalent rLP2086; Trumenba®]) has been approved for protection against MenB infection in persons 10-25 years of age in the United States and Canada and for individuals ≥10 years of age in the European Union and Australia. In these regions, MenB-FHbp is approved as a 2- or 3-dose primary vaccination schedule. This report will review the current evidence supporting administration of MenB-FHbp as a 2-dose primary vaccination schedule. Different contexts in which a 2- or 3-dose primary vaccination schedule might be preferred (eg, routine prospective vaccination vs outbreak control) are reviewed.


Human Vaccines & Immunotherapeutics | 2018

Modeling excess zeroes in an integrated analysis of vaccine safety

Roger Maansson; David Radley; Qin Jiang; Johannes Beeslaar; Scott Patterson; Judith Absalon; John L. Perez

ABSTRACT In prophylactic vaccine studies in healthy populations, many subjects do not experience a single adverse event (AE). Thus, the number of AEs observed in such clinical trials may be difficult to model because of an excess of zeroes relative to the parametric distributions assumed. To determine which type of modeling provides a better fit for observed AE data, a variety of models were applied to data from an integrated safety database from clinical trials of the meningococcal vaccine MenB-FHbp (Trumenba®, bivalent rLP2086; Pfizer Inc, Philadelphia, PA). MenB-FHbp was the first vaccine approved in the United States to prevent meningococcal serogroup B disease in individuals aged 10 to 25 years. Specifically, this report presents an integrated analysis of AEs from 8 randomized controlled trials that compared MenB-FHbp to placebo or active controls. The number of AEs occurring from dose one to 30 days after the last dose was analyzed. Six models were compared: standard Poisson and negative binomial models and their corresponding zero-inflation and hurdle models. Models were evaluated for their ability to predict the number of AEs and by goodness-of-fit statistics. Models based on the Poisson distribution were a poor fit. The zero-inflated negative binomial model and negative binomial hurdle model provided the closest fit. These results suggest that zero-inflated or hurdle models may provide a better fit to AE data from healthy populations compared with conventional parametric models.


Expert Review of Vaccines | 2018

From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine

John L. Perez; Judith Absalon; Johannes Beeslaar; Paul Balmer; Kathrin U. Jansen; Thomas R. Jones; Shannon L. Harris; Laura J. York; Qin Jiang; David Radley; Annaliesa S. Anderson; Graham Crowther; Joseph Eiden

ABSTRACT Introduction: Given the characteristics of meningococcal carriage and transmission and the sudden, often severe onset and long-term consequences of disease, vaccination can most effectively provide large-scale control of invasive disease. Six serogroups (A, B, C, W, X, and Y) cause nearly all meningococcal disease globally. Capsular polysaccharide conjugate vaccines can prevent serogroups A, C, W, and Y disease. More recently, recombinant protein vaccines for preventing serogroup B meningococcal (MenB) disease have become available, with a major target of vaccine-induced immune response for both vaccines being bacterial factor H binding protein (FHbp). Importantly, FHbp segregates into only two distinct subfamilies (A [also classified as variants 2 and 3] and B [variant 1]). This review summarizes the complete clinical development program supporting licensure of MenB-FHbp (Trumenba®, Bivalent rLP2086), the only MenB vaccine containing antigens from both FHbp subfamilies. Areas covered: Eleven published clinical studies assessing MenB-FHbp efficacy and safety among 20,803 adolescents and adults are examined. Particular focus is on the methodology of immunogenicity assessments used as a surrogate for clinical efficacy. Expert commentary: Clinical studies in adolescents and adults consistently demonstrated MenB-FHbp safety and induction of immunologic responses against antigenically and epidemiologically diverse MenB isolates, supporting licensure and immunization recommendations.


Open Forum Infectious Diseases | 2016

Safety of MenB-FHbp (Bivalent rLP2086), a Meningococcal Serogroup B Vaccine, in Young Adults: Results From a Phase 3 Trial

Lars Østergaard; Brian J. Ward; Johannes Beeslaar; Joseph Eiden; Kathrin U. Jansen; Judith Absalon; Laura J. York; David Radley; Jean-Louis Prégaldien; Nina Breinholt Staerke; John L. Perez

Collaboration


Dive into the Johannes Beeslaar's collaboration.

Researchain Logo
Decentralizing Knowledge