Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Boonstra is active.

Publication


Featured researches published by Johannes Boonstra.


Cell Biology International | 1995

The epidermal growth factor.

Johannes Boonstra; P.J. Rijken; Bruno M. Humbel; Fons Cremers; Arie J. Verkleij; Paul M.P. van Bergen en Henegouwen

Epidermal growth factor (EGF) is a single polypeptide of 53 amino acid residues which is involved in the regulation of cell proliferation. Egf exerts its effects in the target cells by binding to the plasma membrane located EGF receptor. The EGF receptor is a transmembrane protein tyrosine kinase. Binding of EGF to the receptor causes activation of the kinase and subsequently receptor autophosphorylation. The autophosphorylation is essential for the interaction of the receptor with its substrates. These bind to the receptor by the so‐called SH2 domains.


Astrobiology | 2013

Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology.

Raúl Herranz; Ralf Anken; Johannes Boonstra; Markus Braun; Peter C. M. Christianen; Maarten de Geest; Jens Hauslage; Reinhard Hilbig; Richard Hill; Michael Lebert; F. Javier Medina; Nicole Vagt; Oliver Ullrich; Jack J. W. A. van Loon; Ruth Hemmersbach

Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.


Experimental Cell Research | 1992

The epidermal growth factor receptor is associated with actin filaments.

Paul M.P. van Bergen en Henegouwen; Jan C. den Hartigh; Petra Romeyn; Arie J. Verkleij; Johannes Boonstra

In this paper we describe our investigations on the association of receptors for the epidermal growth factor (EGF) with the cytoskeleton of A431 cells. In order to determine which filamentous system the EGF receptors are associated to, the cytoskeletal fraction to which these receptors bind was isolated. Second, the possible colocalization of EGF receptors with different cytoskeletal elements was examined in A431 cells. By selective extractions of the A431 cytoskeletons, it is shown that more than 90% of the cytoskeleton-associated EGF receptors are removed from the cytoskeletons together with the actin filamentous system. During several cycles of poly- and depolymerization of actin isolated from A431 cells, the EGF receptor precipitates together with the actin containing filaments, indicating that EGF receptors are able to bind in vitro to actin filaments. With immunofluorescence studies we show that EGF receptors especially colocalize with actin filaments. These results demonstrate that the EGF receptor is associated specifically with actin filaments in A431 cells.


Journal of Biological Chemistry | 1998

Glucose Repression in Saccharomyces cerevisiae Is Related to the Glucose Concentration Rather Than the Glucose Flux

M. M. C. Meijer; Johannes Boonstra; Arie J. Verkleij; C. T. Verrips

Glucose plays an important regulatory role in the yeast Saccharomyces cerevisiae, which is mostly reflected at the transcriptional level by glucose repression. The signal that initiates glucose repression is unknown, but data indicate that it is located at or above the level of glucose 6-phosphate, suggesting the involvement of either the intracellular or extracellular glucose concentration or the glucose flux in triggering glucose repression. We have investigated the role of the glucose flux and the extracellular glucose concentration in glucose repression by growing the cells in continuous culture under nitrogen limitation. By a step-wise increase in the glucose feed concentration, the glucose flux and extracellular glucose concentrations were modulated in an accurate way. Furthermore, the glucose flux and glucose concentrations were modulated independently of each other by increasing the dilution rate or by the use of fructose as a substrate. Using these approaches we demonstrate that glucose repression is related to the extracellular (or intracellular) glucose concentration rather than the glucose flux. At external glucose concentrations lower than 14 mm, glucose repression of SUC2 gene transcription was not triggered, whereas glucose repression of this gene was activated when the glucose concentration exceeded 18 mm. A comparable effect was observed for the glucose-repressible carbon source fructose.


Journal of Cellular Biochemistry | 2003

Progression through the G1‐phase of the on‐going cell cycle

Johannes Boonstra

Cell cycle progression is dependent upon the action of cyclins and their partners the cyclin dependent kinases (CDKs). Each cell cycle phase has its own characteristic cyclin‐CDK combination, cyclin D‐CDK4,6 and cyclin E‐CDK2 being responsible for progression through G1‐phase into S‐phase. Progression through G1‐phase is regulated by signal transduction cascades activated by polypeptide growth factors and by extracellular matrix (ECM) components. Studies aiming to unravel the molecular mechanism by which these extracellular components activate the cyclin‐CDK complexes in the G1‐phase, are usually performed using serum‐starved cells (G0 cells). These cells are activated by addition of growth factors, or the cells are detached from the substratum by trypsinization and subsequently allowed to re‐attach. An alternative approach, however, is to study the effects of growth factors and attachment in the ongoing cell cycle by synchronization of the cells by the mitotic shake‐off method. These cells are not serum starved and not actively detached from the substratum. In this contribution it is shown that both methods yield significant different results. These observations demonstrate that data obtained with model systems should be interpreted with care, especially if the findings are used to explain cell cycle progression in cells in an intact organism. J. Cell. Biochem. 90: 244–252, 2003.


Experimental Cell Research | 1991

Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes

Rolf P. de Groot; P.J. Rijken; Jeroen den Hertog; Johannes Boonstra; Arie J. Verkleij; Siegfried W. de Laat; Wiebe Kruijer

A number of studies have suggested that gravity changes may influence mammalian cell growth and differentiation. To obtain insight in the molecular mechanisms underlying these effects, we have studied immediate early gene expression in response to activation of cytoplasmic signal transduction under microgravity conditions. In this paper we show that epidermal growth factor (EGF)- and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced expression of the c-fos and c-jun protooncogenes is decreased in microgravity, while no effect of gravity changes was observed on A23187- and forskolin-induced expression of these genes. These decrease in c-fos expression was not due to delayed kinetics under microgravity. These results demonstrate that gravity differentially modulates distinctive signal transduction pathways.


Applied and Environmental Microbiology | 2000

Introduction of an N-Glycosylation Site Increases Secretion of Heterologous Proteins in Yeasts

C. Sagt; Bertrand Kleizen; René Verwaal; M. D. M. de Jong; Wally H. Müller; A. Smits; C. Visser; Johannes Boonstra; Arie J. Verkleij; C. T. Verrips

ABSTRACT Saccharomyces cerevisiae is often used to produce heterologous proteins that are preferentially secreted to increase economic feasibility. We used N-glycosylation as a tool to enhance protein secretion. Secretion of cutinase, a lipase, and llama VHH antibody fragments by S. cerevisiae orPichia pastoris improved following the introduction of an N-glycosylation site. When we introduced an N-glycosylation consensus sequence in the N-terminal region of a hydrophobic cutinase, secretion increased fivefold. If an N-glycosylation site was introduced in the C-terminal region, however, secretion increased only 1.8-fold. These results indicate that the use of N glycosylation can significantly enhance heterologous protein secretion.


Experimental Cell Research | 1985

Epidermal growth factor receptor expression related to differentiation capacity in normal and transformed keratinocytes

Johannes Boonstra; Siegfried W. de Laat; M. Ponec

Epidermal growth factor (EGF) and Ca2+ have been indicated to play a major role in skin development. We have used normal keratinocytes, SV40-transformed keratinocytes (SVK14) and various squamous carcinoma cell (SCC) lines as in vitro model system to study the effect of the extracellular Ca2+ concentration of EGF-receptor expression in relation to the capability of cells to differentiate. The cell lines used exhibit a decreasing capacity to differentiate in the order of keratinocytes approximately SVK14 greater than SCC-12F2 greater than SCC-15 greater than SCC-12B2 greater than SCC-4, as judged from Ca2+-ionophore-induced cornified envelope formation. Under normal Ca2+ conditions, all cell lines (except for SCC-15) exhibited two classes of EGF-binding sites. The number of low-affinity binding sites increased considerably as cells were less able to differentiate, while the apparent dissociation constant (kd) was similar in all cell lines. In contrast, the properties of high-affinity EGF binding varied in the various cell lines without a clear relationship to the degree of differentiation capacity. Lowering the extracellular Ca2+ concentration to 0.06 mM resulted in a decrease of Ca2+ ionophore-induced cornified envelope formation, demonstrating the decreased ability to differentiate under these conditions. The decreased ability to differentiate was accompanied by a marked increase in the number of EGF-binding sites, but without a change of the kd. Furthermore, no high-affinity EGF-binding sites were detectable under these conditions. Finally, addition of Ca2+ to low Ca2+-cultured cells caused a rapid decrease of EGF binding in all cell lines, most prominently in normal keratinocytes and SCC-12F2 cells. The data presented demonstrate: The combination of normal keratinocytes, SVK14 and the various SCC lines provides an attractive model system to study differentiation in vitro; EGF-receptor expression is related to the state of differentiation, both phenomena being sensitive to the external Ca2+ concentration; and EGF-receptor expression is related to the capability of cells to differentiate.


Gene | 2012

The influence of reactive oxygen species on cell cycle progression in mammalian cells.

Eline Hendrike Verbon; Jan Andries Post; Johannes Boonstra

Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.


Mechanisms of Development | 1994

Expression pattern of parathyroid hormone/parathyroid hormone related peptide receptor mRNA in mouse postimplantation embryos indicates involvement in multiple developmental processes

Marcel Karperien; Thamar B. van Dijk; Truus Hoeijmakers; Fons Cremers; Abdul-Badi Abou-Samra; Johannes Boonstra; Siegfried W. de Laat; L. H. K. Defize

In this paper we describe the cloning of the mouse Parathyroid Hormone/Parathyroid Hormone related Peptide Receptor (PTH/PTHrPR) cDNA and expression of its mRNA during mouse postimplantation development from day 5.5 until day 15.5 post coitum (p.c.). In support of a model from previous studies, in which parietal endoderm differentiation is regulated by the interaction of the PTH/PTHrPR and Parathyroid Hormone related Peptide (PTHrP), high levels of PTH/PTHrPR mRNA levels were detected in developing parietal endoderm from day 5.5 p.c. and onwards. In the embryo proper, PTH/PTHrPR mRNA expression was mainly detected at sites of epithelium/mesenchyme interactions, starting at day 9.5 p.c. in the epithelium of the intestine and later in the mesenchyme of the lung, the epithelium of meso- and metanephric tubuli, the dermis and at all sites where bone formation takes place. The complexity of the PTH/PTHrPR expression pattern suggests tight developmental regulation and indicates multiple roles in embryogenesis for the receptor and its ligands, not only in extraembryonic tissue but also in the formation of various organs.

Collaboration


Dive into the Johannes Boonstra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.W. de Laat

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Ponec

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge