Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes D. Veldhuis is active.

Publication


Featured researches published by Johannes D. Veldhuis.


Journal of Clinical Investigation | 2003

The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men

Jean L. Chan; Kathleen Heist; Alex M. DePaoli; Johannes D. Veldhuis; Christos S. Mantzoros

To elucidate the role of leptin in regulating neuroendocrine and metabolic function during an acute fast, six to eight healthy, lean men were studied under four separate conditions: a baseline fed state and three 72-hour fasting studies with administration of either placebo, low-dose recombinant-methionyl human leptin (r-metHuLeptin), or replacement-dose r-metHuLeptin designed to maintain serum leptin at levels similar to those in the fed state. Replacement-dose r-metHuLeptin administered during fasting prevents the starvation-induced changes in the hypothalamic-pituitary-gonadal axis and, in part, the hypothalamic-pituitary-thyroid axis and IGF-1 binding capacity in serum. Thus, in normal men, the fall in leptin with fasting may be both necessary and sufficient for the physiologic adaptations of these axes, which require leptin levels above a certain threshold for activation. In contrast to findings in mice, fasting-induced changes in the hypothalamic-pituitary-adrenal, renin-aldosterone, and growth hormone-IGF-1 axes as well as fuel utilization may be independent of leptin in humans. The role of leptin in normalizing several starvation-induced neuroendocrine changes may have important implications for the pathophysiology and treatment of eating disorders and obesity.


Journal of Clinical Investigation | 1988

Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man.

K. Y. Ho; Johannes D. Veldhuis; Michael L. Johnson; R. Furlanetto; William S. Evans; K. G. M. M. Alberti; Michael O. Thorner

Studies in man have shown that the episodic release of growth hormone (GH) is infrequent and erratic, and unlike that in the rat does not appear to have discernible ultradian periodicities. However, these observations in nonfasted subjects may be invalid since mixed nutrients have unpredictable effects on GH release. Moreover, in the fed state basal GH levels are frequently undetectable, thus rendering the identification of low amplitude pulses unreliable. Accordingly, the 24-h pulsatile pattern of GH secretion obtained from repetitive venous sampling in six normal adult male subjects was examined during a control fed day and during the first and fifth days of a 5-d fast. The GH data were analyzed using two distinct methods: a discrete pulse detection algorithm (Cluster analysis) and Fourier expansion time-series, which allows fixed periodicities of secretory activity to be resolved. The 5-d fast resulted in a significant increase in discrete GH pulse frequency (5.8 +/- 0.7 vs. 9.9 +/- 0.7 pulses/24 h, P = 0.028), 24 h integrated GH concentration (2.82 +/- 0.50 vs. 8.75 +/- 0.82 micrograms.min/ml; P = 0.0002), and maximal pulse amplitude (5.9 +/- 1.1 vs. 12.3 +/- 1.6 ng/ml, P less than 0.005). While multiple low-amplitude sinusoidal periodicities were present on the control fed day, time-series analysis revealed enhancement of circadian and ultradian cycles on the first and fifth days of fasting. Concomitantly, fasting resulted in a decline (day 1 vs. day 5) in serum concentrations of somatomedin C (1.31 +/- 0.22 vs. 0.77 +/- 0.18 U/ml) and glucose (4.9 +/- 0.2 vs. 3.2 +/- 0.2 mmol/liter), and a marked rise in free fatty acid (0.43 +/- 0.12 vs. 1.55 +/- 0.35 mmol/liter) and acetoacetate (35 +/- 6 vs. 507 +/- 80 nmol/liter). We conclude that the acute nutritional status is an important determinant of spontaneous pulsatile GH secretion in man. Fast-induced enhancement of GH release is achieved through combined frequency (discrete pulses) and amplitude (sinusoidal periodicities) modulation. Such alterations in somatotropic hormone release may play an important role in substrate homeostasis during starvation.


Methods in Enzymology | 1992

Deconvolution analysis of hormone data

Johannes D. Veldhuis; Michael L. Johnson

Deconvolution analysis of hormone data poses special problems in view of the sparse, noisy, and short data series typically available for analysis; the unknown true nature of the underlying secretory event; and potentially large variations in dissipation or clearance kinetics in different settings. Consequently, deconvolution techniques, which concern themselves with the estimation of hormone secretion and/or clearance based on serial circulating hormone concentration measurements, face a particular challenge. Ideal features of deconvolution algorithms are summarized in Table IV. Specific deconvolution techniques available to analyze hormone data include both waveform-defined procedures and waveform-independent algorithms. These approaches should be viewed as complementary rather than antagonistic. All deconvolution techniques are subject to individual limitations and specific strengths. Independently of the method employed, error propagation is necessary so as to define the statistical uncertainty intrinsic to the estimate of secretion and clearance. Such calculations of experimental uncertainty should include error inherent in the sample collection, processing, and assay as well as error in the kinetic constants and/or anticipated departures of the biological process from the algebraic structure of the convolution formulation. Moreover, more complex convolution statements will be required to describe the full range of behavior of hormone data in a systems view. The applications of such newer convolution methods as well as currently available techniques include model synthesis, model testing, and analysis of the interactions among multiple pulse generators.


Journal of Clinical Investigation | 1994

Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release.

Mark L. Hartman; S M Pincus; Michael L. Johnson; D H Matthews; Lindsay M. Faunt; Mary Lee Vance; Michael O. Thorner; Johannes D. Veldhuis

Pulses of growth hormone (GH) release in acromegaly may arise from hypothalamic regulation or from random events intrinsic to adenomatous tissue. To distinguish between these possibilities, serum GH concentrations were measured at 5-min intervals for 24 h in acromegalic men and women with active (n = 19) and inactive (n = 9) disease and in normal young adults in the fed (n = 20) and fasted (n = 16) states. Daily GH secretion rates, calculated by deconvolution analysis, were greater in patients with active acromegaly than in fed (P < 0.05) but not fasted normal subjects. Significant basal (nonpulsatile) GH secretion was present in virtually all active acromegalics but not those in remission or in fed and fasted normal subjects. A recently introduced scale- and model-independent statistic, approximate entropy (ApEn), was used to test for regularity (orderliness) in the GH data. All but one acromegalic had ApEn values greater than the absolute range in normal subjects, indicating reduced orderliness of GH release; ApEn distinguished acromegalic from normal GH secretion (fed, P < 10(-12); fasted, P < 10(-7)) with high sensitivity (95%) and specificity (100%). Acromegalics in remission had ApEn scores larger than those of normal subjects (P < 0.0001) but smaller than those of active acromegalics (P < 0.001). The coefficient of variation of successive incremental changes in GH concentrations was significantly lower in acromegalics than in normal subjects (P < 0.001). Fourier analysis in acromegalics revealed reduced fractional amplitudes compared to normal subjects (P < 0.05). We conclude that GH secretion in acromegaly is highly irregular with disorderly release accompanying significant basal secretion.


Neurobiology of Aging | 1997

Twenty-Four Hour Cortisol Release Profiles in Patients With Alzheimer’s and Parkinson’s Disease Compared to Normal Controls: Ultradian Secretory Pulsatility and Diurnal Variation

Andreas Hartmann; Johannes D. Veldhuis; Michael Deuschle; Harald Standhardt; I Heuser

Endocrine abnormalities of the hypothalamic-pituitary-adrenal (HPA) system in patients with Alzheimers disease (AD) and Parkinsons disease (PD) have been described repeatedly. However, no data are available on the diurnal cortisol secretory pattern in these major neurodegenerative disorders. Therefore, we studied 24-h pulsatile cortisol secretion in 12 patients with AD and 12 patients with PD compared to 10 normal community- and age-matched volunteers (NV). Twenty-four hour blood sampling was performed from 1800 h to 1800 h at 15-min intervals. Cortisol half-life, number of cortisol secretory bursts/24-h, interpulse interval, mass of cortisol secreted per burst, amplitude of cortisol secretory bursts, pulsatile cortisol production rate, 24-h mean, and integral cortisol concentrations were calculated by applying deconvolution analysis. Furthermore, the relative diurnal variation and the quiescent period were determined. Patients with AD and PD were found to have significantly higher total plasma cortisol concentrations (24-h pulsatile cortisol production rate: AD + 56%; PD + 52%/24-h integrated cortisol: AD + 37%; PD + 29%) compared to NV. This sustained hypercortisolism is due to a higher mass of cortisol secreted per burst (AD + 62%; PD + 79%), but not to increased cortisol half-life or secretory pulse frequency or amplitude. Despite these similarities between AD and PD patients, relative diurnal variation of cortisol secretion was significantly decreased in patients with PD (-22%), whereas the pattern of secretory curves was not different between NV and AD patients. This observation was indirectly supported by a reduction of the quiescent period in patients with PD (-74 min) compared to the NV and AD group. Based on these results and recently published animal data, we hypothesize that decreased expression of hippocampal mineralocorticoid receptors (MR) may account for the flattened diurnal cortisol secretory curve observed in PD patients, whereas the intact diurnal profile in AD patients may be due to a relative increase in MR compensating for the hippocampal neuronal loss commonly occurring in this disorder.


Journal of Clinical Investigation | 1984

Role of endogenous opiates in the expression of negative feedback actions of androgen and estrogen on pulsatile properties of luteinizing hormone secretion in man.

Johannes D. Veldhuis; Alan D. Rogol; Eugene Samojlik; N. H. Ertel

We have tested the participation of endogenous opiate pathways in the negative feedback actions of gonadal steroids on pulsatile properties of luteinizing (LH) hormone release in normal men. To this end, sex steroid hormones were infused intravenously at dosages that under steady state conditions selectively suppressed either the frequency or the amplitude of the pulsatile LH signal. The properties of pulsatile LH secretion were assessed quantitatively by computerized analysis of LH series derived from serial blood sampling over 12 h of observation. When the pure (nonaromatizable) androgen, 5-alpha-dihydrotestosterone, was infused continuously for 108 h at the blood production rate of testosterone, we were able to achieve selective inhibition of LH pulse frequency akin to that observed in experimental animals after low-dosage androgen replacement. Under these conditions, serum concentrations of testosterone and estradiol-17 beta did not change significantly, but serum 5 alpha-dihydrotestosterone concentrations increased approximately two- to threefold, with a corresponding increase in levels of its major metabolite, 5 alpha-androstan-3 alpha, 17 beta-diol. In separate experiments, the infusion of estradiol-17 beta at its blood production rate over a 4.5-d interval selectively suppressed LH pulse amplitude without influencing LH pulse frequency. Estrogen infusion increased serum estradiol-17 beta levels approximately twofold without significantly altering blood androgen concentrations. We then used these schedules of selective androgen or estrogen infusion to investigate the participation of endogenous opiates in the individual inhibitory feedback actions of pure androgen or estrogen on pulsatile LH release by administering a potent and specific opiate-receptor antagonist, naltrexone, during the infusions. Our observations indicate that, despite the continuous infusion of a dosage of 5 alpha-dihydrotestosterone that significantly suppresses LH pulse frequency, co-administration of an opiate-receptor antagonist effectively reinstates LH pulse frequency to control levels. Moreover, during the infusion of a suppressive dose of estradiol-17 beta, opiate receptor blockade significantly augments LH pulse frequency and increases LH peak amplitude to control levels. Thus, the present studies in normal men demonstrate for the first time that the selective inhibitory action of a pure androgen on LH pulse frequency is effectively antagonized by opiate-receptor blockade. This pivotal observation indicates that opiatergic and androgen-dependent mechanisms specifically and coordinately control the hypothalamic pulse generator for gonadotropin-releasing hormone (GnRH)


Clinical Endocrinology | 1992

Pulsatile growth hormone release in normal women during the menstrual cycle

Amilton C. S. Faria; L. W. Bekenstein; Robert A. Booth; Veronica A. Vaccaro; Christopher M. Asplin; Johannes D. Veldhuis; Michael O. Thorner; William S. Evans

OBJECTIVE We sought to characterize pulsatile growth hormone (GH) release in normal women during the menstrual cycle and to document possible relationships between such characteristics and concentrations of 17 β‐oestradiol and progesterone.


Acta Psychiatrica Scandinavica | 2007

Pathophysiology of hypercortisolism in depression

Bernard J. Carroll; Frederick Cassidy; D. Naftolowitz; N. Tatham; William H. Wilson; Ali Iranmanesh; Peter Y. Liu; Johannes D. Veldhuis

Objective:  The mechanisms mediating hypercortisolemia in depression remain controversial. Adopting the biomarker strategy, we studied adrenocorticotropin (ACTH) and cortisol dynamics in hypercortisolemic and non‐hypercortisolemic depressed in‐patients, and in normal volunteers.


Hormone Research in Paediatrics | 1996

Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty.

Nelly Mauras; Alan D. Rogol; Morey W. Haymond; Johannes D. Veldhuis

UNLABELLED The control of the onset of puberty involves the complex interaction of pituitary and gonadal hormones. At a preprogrammed time in a childs life there is an increase in the amplitude of GnRH pulses which triggers a cascade of events including increases in the amplitude of FSH and LH pulses, followed by marked increases in gonadal sex steroidal output, which in turn increases growth hormone (GH) and insulin-like growth factor-1 (IGF-1) production. Evidence suggests that there is an integral interaction between the endogenous opiate system and the hypothalamic-pituitary-gonadal axis, at least in the later stages of puberty in the male. Both androgenic and estrogenic hormones markedly increase GH production rates as measured by deconvolution models in the prepubertal human, and compelling data strongly suggest that it is indeed the estrogen which controls the feedback amplification of GH production during puberty even in the male. It appears that the prepubertal gonad is actively producing sex hormones which might be important in the control of GH production since early childhood. The translation of these neuroendocrine rhythms into distal metabolic actions is also reviewed. Utilizing isotopic tracer infusions of the essential amino acid leucine, studies clearly show a selective stimulation of whole body protein synthesis by both GH and IGF-1. GH, IGF-1 and androgenic hormones all increase in puberty, stimulating whole body protein anabolism during that period. However, we observed no protein-anabolic effect in the hypogonadal female given increasing doses of estrogen. The latter suggests that at least as it pertains to whole body protein effects, the action of androgens is probably mediated via the androgen and not the estrogen receptor, in clear distinction from the estrogen-mediated effects of androgens on the neuroendocrine axis. Calcium absorption and retention are also positively affected by the androgens as shown by significant increases in calcium absorption and retention after the administration of testosterone to the prepubertal male. This suggests an important role of sex steroidal hormones in the mineralization of the skeleton. IN CONCLUSION GH, IGF-1 and sex steroids all markedly increase during puberty and their actions are amplified mutually as they control growth, increase muscle mass and affect the mineralization of the skeleton. The dichotomy of androgen and estrogen effects in the male and female may regulate the differential timing of the onset of puberty and final height in the two sexes. The synergistic actions of these anabolic hormones appear to be most significant during the finite years of puberty.


Endocrine Reviews | 2008

Motivations and Methods for Analyzing Pulsatile Hormone Secretion

Johannes D. Veldhuis; Daniel M. Keenan; Steven M. Pincus

Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses.

Collaboration


Dive into the Johannes D. Veldhuis's collaboration.

Top Co-Authors

Avatar

Ali Iranmanesh

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferdinand Roelfsema

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge