Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes F.G. Vliegenthart is active.

Publication


Featured researches published by Johannes F.G. Vliegenthart.


Carbohydrate Research | 1978

Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary G.L.C.

Gerrit J. Gerwig; Johannis P. Kamerling; Johannes F.G. Vliegenthart

Capillary g.l.c. on SE-30 of the trimethylsilylated (-)-2-butyl glycosides of d and l monosaccharides gives multiple peak patterns, which can be used for the assignment of the absolute configurations. (-)-2-Butyl glycosides can be prepared from monosaccharides or their methyl glycosides; consequently, for the analysis of oligo- or poly-saccharides, hydrolysis as well as methanolysis can be applied. Provided that the peaks of the (-)-2-butyl glycosides do not completely overlap, mixtures of monosaccharides can be analysed directly, as illustrated for the constituents of the cell-wall lipopolysaccharide from Salmonella typhimurium LT-2.


Carbohydrate Research | 1979

Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary G.L.C.

Gerit J. Gerwig; Johannis P. Kamerling; Johannes F.G. Vliegenthart

The absolute configuration of neutral monosaccharides, 2-acetamido-2-deoxy sugars, and uronic acids can be determined by capillary g.l.c. on SE-30 after glycosidation with (-)-2-butanol and protection of the remaining polar groups. The method is illustrated by application to mixtures of the constituent sugars of the capsular polysaccharide from Klebsiella type 57, alpha 1-acid glycoprotein, mucus glycoproteins, and the methylated, acidic polysaccharide from the coccoliths of Emiliania huxleyi (Lohmann) Kamptner.


Cellular and Molecular Life Sciences | 1982

Structure, biosynthesis and functions of glycoprotein glycans

Eric G. Berger; Eckhart Buddecke; Johannis P. Kamerling; Akira Kobata; James C. Paulson; Johannes F.G. Vliegenthart

Since the pioneering work on structure and function of heteroglycans compiled in the classical books edited by A. Gottschalk in 19721, there have been several promising developments in glycoconjugate research, as reviewed in this article. In Part 1, contributed by A. Kobata, current knowledge on heteroglycan structures is presented and representative examples taken from higher organisms are given. Part 2, written by J. F. G. Vliegenthart and J. P. Kamerling, covers the most important achievements in methodology: procedures to obtain pure glycans and to analyze their structures. Part 3, contributed by J. Paulson, is devoted to biosynthesis of glycans now describable as pathways since several of the glycosyltransferases have been isolated and analyzed for specificity. In Part 4, contributed by E. Buddecke, current knowledge on functional roles of glycans is presented. It will become apparent that the prerequisite for valid work either in biosynthetic or functional context depends on solid structural information. This is particularly true whenever glycosyltransferase reaction products are being analyzed, or glycans involved in biological functions are investigated. Although in past years, a great deal of important knowledge has been gathered by use of crude glycosidase or glycosyltransferase activities (a notable example is found in reference 2), one may now postulate that glycans implicated in biological reactions should be thoroughly analyzed. This review may familiarize ‘newcomers’ with the field of glycoconjugate research with special emphasis on glycoprotein glycans. Glycolipids are not included in this article as they have recently been reviewed by S. I. Hakomori3. The reader is also referred to several excellent monographs4,5 and the Proceedings of the Glycoconjugate Symposia held biannually6–8.


The Journal of Neuroscience | 2001

Exogenous anandamide protects rat brain against acute neuronal injury in vivo

M. van der Stelt; Wouter B. Veldhuis; G. van Haaften; Filomena Fezza; T. Bisogno; P.R. Bär; Gerrit A. Veldink; Johannes F.G. Vliegenthart; V. Di Marzo; Klaas Nicolay

The endocannabinoid anandamide [N-arachidonoylethanolamine (AEA)] is thought to function as an endogenous protective factor of the brain against acute neuronal damage. However, this has never been tested in an in vivo model of acute brain injury. Here, we show in a longitudinal pharmacological magnetic resonance imaging study that exogenously administered AEA dose-dependently reduced neuronal damage in neonatal rats injected intracerebrally with the Na+/K+-ATPase inhibitor ouabain. At 15 min after injury, AEA (10 mg/kg) administered 30 min before ouabain injection reduced the volume of cytotoxic edema by 43 ± 15% in a manner insensitive to the cannabinoid CB1receptor antagonist SR141716A. At 7 d after ouabain treatment, 64 ± 24% less neuronal damage was observed in AEA-treated (10 mg/kg) rats compared with control animals. Coadministration of SR141716A prevented the neuroprotective actions of AEA at this end point. In addition, (1) no increase in AEA and 2-arachidonoylglycerol levels was detected at 2, 8, or 24 hr after ouabain injection; (2) application of SR141716A alone did not increase the lesion volume at days 0 and 7; and (3) the AEA-uptake inhibitor, VDM11, did not affect the lesion volume. These data indicate that there was no endogenous endocannabinoid tone controlling the acute neuronal damage induced by ouabain. Although our data seem to question a possible role of the endogenous cannabinoid system in establishing a brain defense system in our model, AEA may be used as a structural template to develop neuroprotective agents.


Trends in Biotechnology | 1997

Crystallinity in starch plastics: consequences for material properties

Jeroen J.G. van Soest; Johannes F.G. Vliegenthart

The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant of the products properties. This article describes the influence of processing and storage conditions on starch crystallinity and offers possible explanations for the various properties of starch plastics, in particular for the problems associated with ageing, in terms of the different crystalline structures.


Glycobiology | 2015

Symbol Nomenclature for Graphical Representations of Glycans

Ajit Varki; Richard D. Cummings; Markus Aebi; Nicole Packer; Peter H. Seeberger; Jeffrey D. Esko; Pamela Stanley; Gerald W. Hart; Alan G. Darvill; Taroh Kinoshita; James J. Prestegard; Ronald L. Schnaar; Hudson H. Freeze; Jamey D. Marth; Carolyn R. Bertozzi; Marilynn E. Etzler; Martin Frank; Johannes F.G. Vliegenthart; Thomas Lütteke; Serge Pérez; Evan Bolton; Pauline M. Rudd; James C. Paulson; Minoru Kanehisa; Philip V. Toukach; Kiyoko F. Aoki-Kinoshita; Anne Dell; Hisashi Narimatsu; William S. York; Naoyuki Taniguchi

Author(s): Varki, Ajit; Cummings, Richard D; Aebi, Markus; Packer, Nicole H; Seeberger, Peter H; Esko, Jeffrey D; Stanley, Pamela; Hart, Gerald; Darvill, Alan; Kinoshita, Taroh; Prestegard, James J; Schnaar, Ronald L; Freeze, Hudson H; Marth, Jamey D; Bertozzi, Carolyn R; Etzler, Marilynn E; Frank, Martin; Vliegenthart, Johannes Fg; Lutteke, Thomas; Perez, Serge; Bolton, Evan; Rudd, Pauline; Paulson, James; Kanehisa, Minoru; Toukach, Philip; Aoki-Kinoshita, Kiyoko F; Dell, Anne; Narimatsu, Hisashi; York, William; Taniguchi, Naoyuki; Kornfeld, Stuart


The Journal of Neuroscience | 2003

Neuroprotection by the Endogenous Cannabinoid Anandamide and Arvanil against In Vivo Excitotoxicity in the Rat: Role of Vanilloid Receptors and Lipoxygenases

Wouter B. Veldhuis; M. van der Stelt; M. W. Wadman; G. van Zadelhoff; Mauro Maccarrone; Filomena Fezza; Gerrit A. Veldink; Johannes F.G. Vliegenthart; P.R. Bär; Klaas Nicolay; V. Di Marzo

Type 1 vanilloid receptors (VR1) have been identified recently in the brain, in which they serve as yet primarily undetermined purposes. The endocannabinoid anandamide (AEA) and some of its oxidative metabolites are ligands for VR1, and AEA has been shown to afford protection against ouabain-induced in vivo excitotoxicity, in a manner that is only in part dependent on the type 1 cannabinoid (CB1) receptor. In the present study, we assessed whether VR1 is involved in neuroprotection by AEA and by arvanil, a hydrolysis-stable AEA analog that is a ligand for both VR1 and CB1. Furthermore, we assessed the putative involvement of lipoxygenase metabolites of AEA in conveying neuroprotection. Using HPLC and gas chromatography/mass spectroscopy, we demonstrated that rat brain and blood cells converted AEA into 12-hydroxy-N-arachidoylethanolamine (12-HAEA) and 15-hydroxy-N-arachidonoylethanolamine (15-HAEA) and that this conversion was blocked by addition of the lipoxygenase inhibitor nordihydroguaiaretic acid. Using magnetic resonance imaging we show the following: (1) pretreatment with the reduced 12-lipoxygenase metabolite of AEA, 12-HAEA, attenuated cytotoxic edema formation in a CB1 receptor-independent manner in the acute phase after intracranial injection of the Na+/K+-ATPase inhibitor ouabain; (2) the reduced 15-lipoxygenase metabolite, 15-HAEA, enhanced the neuroprotective effect of AEA in the acute phase; (3) modulation of VR1, as tested using arvanil, the VR1 agonist capsaicin, and the antagonist capsazepine, leads to neuroprotective effects in this model, and arvanil is a potent neuroprotectant, acting at both CB1 and VR1; and (4) the in vivo neuroprotective effects of AEA are mediated by CB1 but not by lipoxygenase metabolites or VR1.


The Journal of Neuroscience | 2001

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

M. van der Stelt; Wouter B. Veldhuis; Gerrit A. Veldink; Johannes F.G. Vliegenthart; Klaas Nicolay

Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that Δ9-tetrahydrocannabinol (Δ9-THC), the main active compound in marijuana, reduces neuronal injury in neonatal rats injected intracerebrally with the Na+/K+-ATPase inhibitor ouabain to elicit excitotoxicity. In the acute phase Δ9-THC reduced the volume of cytotoxic edema by 22%. After 7 d, 36% less neuronal damage was observed in treated rats compared with control animals. Coadministration of the CB1 cannabinoid receptor antagonist SR141716 prevented the neuroprotective actions of Δ9-THC, indicating that Δ9-THC afforded protection to neurons via the CB1 receptor. In Δ9-THC-treated rats the volume of astrogliotic tissue was 36% smaller. The CB1 receptor antagonist did not block this effect. These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.


American Journal of Human Genetics | 2000

A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency

Claudine De Praeter; Gerrit J. Gerwig; Ernst Bause; Lieve K. Nuytinck; Johannes F.G. Vliegenthart; Wilhelm Breuer; Johannis P. Kamerling; Marc Espeel; Jean-Jacques R. Martin; Anne De Paepe; Nora W. C. Chan; Georges Dacremont; Rudy Van Coster

Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patients urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.


Cell | 1993

β-d-glucosyl-hydroxymethyluracil: A novel modified base present in the DNA of the parasitic protozoan T. brucei

Janet H. Gommers-Ampt; Fred W. van Leeuwen; Antonius L.J. de Beer; Johannes F.G. Vliegenthart; Miral Dizdaroglu; Jeffrey A. Kowalak; Pamela F. Crain; Piet Borst

We have previously shown that the DNA of the unicellular eukaryote T. brucei contains about 0.1% of a novel modified base, called J. The presence of J correlates with a DNA modification associated with the silencing of telomeric expression sites for the variant surface antigens of trypanosomes. Here we show that J is 5-((beta-D-glucopyranosyloxy)-methyl)-uracil (shortened to beta-D-glucosyl-hydroxymethyluracil), a base not previously found in DNA. We discuss putative pathways for the introduction of this base modification at specific positions in the DNA and the possible contribution of this modification to repression of surface antigen gene expression.

Collaboration


Dive into the Johannes F.G. Vliegenthart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Montreuil

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Strecker

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge