Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes F. Scheid is active.

Publication


Featured researches published by Johannes F. Scheid.


Science | 2010

Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01.

Tongqing Zhou; Ivelin S. Georgiev; Xueling Wu; Zhi-Yong Yang; Kaifan Dai; Andrés Finzi; Young Do Kwon; Johannes F. Scheid; Wei Shi; Ling Xu; Yongping Yang; Jiang Zhu; Michel C. Nussenzweig; Joseph Sodroski; Lawrence Shapiro; Gary J. Nabel; John R. Mascola; Peter D. Kwong

Designer Anti-HIV Developing a protective HIV vaccine remains a top global health priority. One strategy to identify potential vaccine candidates is to isolate broadly neutralizing antibodies from infected individuals and then attempt to elicit the same antibody response through vaccination (see the Perspective by Burton and Weiss). Wu et al. (p. 856, published online 8 July) now report the identification of three broadly neutralizing antibodies, isolated from an HIV-1–infected individual, that exhibited great breadth and potency of neutralization and were specific for the co-receptor CD4-binding site of the glycoprotein 120 (gp120), part of the viral Env spike. Zhou et al. (p. 811, published online 8 July) analyzed the crystal structure for one of these antibodies, VRC01, in complex with an HIV-1 gp120. VRC01 focuses its binding onto a conformationally invariant domain that is the site of initial CD4 attachment, which allows the antibody to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. The epitopes recognized by these antibodies suggest potential immunogens that can inform vaccine design. A human antibody achieves broad neutralization by binding the viral site of recognition for the primary host receptor, CD4. During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.


Science | 2011

Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding

Johannes F. Scheid; Hugo Mouquet; Beatrix Ueberheide; Ron Diskin; Florian Klein; Thiago Y. Oliveira; John Pietzsch; David Fenyö; Alexander Abadir; Klara Velinzon; Arlene Hurley; Sunnie Myung; Farid Boulad; Pascal Poignard; Dennis R. Burton; Florencia Pereyra; David D. Ho; Bruce D. Walker; Michael S. Seaman; Pamela J. Bjorkman; Brian T. Chait; Michel C. Nussenzweig

Anti-HIV broadly neutralizing antibodies with similar specificities and modes of binding were found in multiple HIV-infected individuals. Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.


Nature | 2009

Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals

Johannes F. Scheid; Hugo Mouquet; Niklas Feldhahn; Michael S. Seaman; Klara Velinzon; John Pietzsch; Rene G. Ott; Robert M. Anthony; Henry Zebroski; Arlene Hurley; Adhuna Phogat; Bimal K. Chakrabarti; Yuxing Li; Mark Connors; Florencia Pereyra; Bruce D. Walker; Hedda Wardemann; David D. Ho; Richard T. Wyatt; John R. Mascola; Jeffrey V. Ravetch; Michel C. Nussenzweig

Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum. However, little is known about the specificity and activity of these antibodies. To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads. We show that in these patients, the B-cell memory response to gp140 is composed of up to 50 independent clones expressing high affinity neutralizing antibodies to the gp120 variable loops, the CD4-binding site, the co-receptor-binding site, and to a new neutralizing epitope that is in the same region of gp120 as the CD4-binding site. Thus, the IgG memory B-cell compartment in the selected group of patients with broad serum neutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120.


Nature | 2012

HIV therapy by a combination of broadly neutralizing antibodies in humanized mice

Florian Klein; Ariel Halper-Stromberg; Joshua A. Horwitz; Henning Gruell; Johannes F. Scheid; Stylianos Bournazos; Hugo Mouquet; Linda Spatz; Ron Diskin; Alexander Abadir; Trinity Zang; Marcus Dorner; Eva Billerbeck; Rachael N. Labitt; Christian Gaebler; Paola M. Marcovecchio; Reha-Baris Incesu; Thomas R. Eisenreich; Paul D. Bieniasz; Michael S. Seaman; Pamela J. Bjorkman; Jeffrey V. Ravetch; Alexander Ploss; Michel C. Nussenzweig

Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.


Science | 2013

Antibodies in HIV-1 Vaccine Development and Therapy

Florian Klein; Hugo Mouquet; Pia Dosenovic; Johannes F. Scheid; Louise Scharf; Michel C. Nussenzweig

Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1–neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.


Nature | 2010

Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation

Hugo Mouquet; Johannes F. Scheid; Markus Zoller; Michelle Krogsgaard; Rene G. Ott; Shetha Shukair; Maxim N. Artyomov; John Pietzsch; Mark Connors; Florencia Pereyra; Bruce D. Walker; David D. Ho; Patrick C. Wilson; Michael S. Seaman; Herman N. Eisen; Arup K. Chakraborty; Thomas J. Hope; Jeffrey V. Ravetch; Hedda Wardemann; Michel C. Nussenzweig

During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.


Science | 2011

Increasing the potency and breadth of an HIV antibody by using structure-based rational design.

Ron Diskin; Johannes F. Scheid; Paola M. Marcovecchio; Anthony P. West; Florian Klein; Han Gao; Priyanthi N. P. Gnanapragasam; Alexander Abadir; Michael S. Seaman; Michel C. Nussenzweig; Pamela J. Bjorkman

Structural analysis of an HIV antibody reveals residues important for neutralization breadth and potency. Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity–determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46G54W, a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46–gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies

Hugo Mouquet; Louise Scharf; Zelda Euler; Yan Liu; Caroline Eden; Johannes F. Scheid; Ariel Halper-Stromberg; Priyanthi N. P. Gnanapragasam; Daniel I. R. Spencer; Michael S. Seaman; Hanneke Schuitemaker; Ten Feizi; Michel C. Nussenzweig; Pamela J. Bjorkman

Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074–like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a “liganded” PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain.


Cell | 2014

Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy

Anthony P. West; Louise Scharf; Johannes F. Scheid; Florian Klein; Pamela J. Bjorkman; Michel C. Nussenzweig

Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.


Immunity | 2013

Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies.

Tongqing Zhou; Jiang Zhu; Xueling Wu; Stephanie Moquin; Baoshan Zhang; Priyamvada Acharya; Ivelin S. Georgiev; Han R. Altae-Tran; Gwo-Yu Chuang; M. Gordon Joyce; Young Do Kwon; Nancy S. Longo; Mark K. Louder; Timothy S. Luongo; Krisha McKee; Chaim A. Schramm; Jeff Skinner; Yongping Yang; Zhongjia Yang; Z. F. Zhang; Anqi Zheng; Mattia Bonsignori; Barton F. Haynes; Johannes F. Scheid; Michel C. Nussenzweig; Melissa Simek; Dennis R. Burton; Wayne C. Koff; James C. Mullikin; Mark Connors

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.

Collaboration


Dive into the Johannes F. Scheid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Seaman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela J. Bjorkman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony P. West

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Diskin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonidas Stamatatos

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge