Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes F. Wentzel is active.

Publication


Featured researches published by Johannes F. Wentzel.


Analytical Biochemistry | 2010

Assessing the DNA methylation status of single cells with the comet assay.

Johannes F. Wentzel; Chrisna Gouws; Cristal Huysamen; Etresia van Dyk; Gerhard Koekemoer; Pieter J. Pretorius

The comet assay (single cell gel electrophoresis) is a cost-effective, sensitive, and simple technique that is traditionally used for analyzing and quantifying DNA damage in individual cells. The aim of this study was to determine whether the comet assay could be modified to detect changes in the levels of DNA methylation in single cells. We used the difference in methylation sensitivity of the isoschizomeric restriction endonucleases HpaII and MspI to demonstrate the feasibility of the comet assay to measure the global DNA methylation level of individual cells. The results were verified with the well-established cytosine extension assay. We were able to show variations in DNA methylation after treatment of cultured cells with 5-azacytidine and succinylacetone, an accumulating metabolite in human tyrosinemia type I.


Biochimica et Biophysica Acta | 2016

Characterization of the cell-free DNA released by cultured cancer cells

Abel Jacobus Bronkhorst; Johannes F. Wentzel; Janine Aucamp; Etresia van Dyk; Lissinda H. Du Plessis; Piet J. Pretorius

The most prominent factor that delays the translation of cell-free DNA (cfDNA) analyses to clinical practice is the lack of knowledge regarding its origin and composition. The elucidation of the former is complicated by the seemingly random fluctuation of quantitative and qualitative characteristics of cfDNA in the blood of healthy and diseased individuals. Besides methodological discrepancies, this could be ascribed to a web of cellular responses to various environmental cues and stressors. Since all cells release cfDNA, it follows that the cfDNA in the blood of cancer patients is not only representative of tumor derived DNA, but also of DNA released by healthy cells under different conditions. Additionally, cfDNA released by malignant cells is not necessarily just aberrant, but likely includes non-mutated chromosomal DNA fragments. This may cause false positive/negative results. Although many have acknowledged that this is a major problem, few have addressed it. We propose that many of the current stumbling blocks encountered in in vivo cfDNA studies can be partially circumvented by in vitro models. Accordingly, the purpose of this work was to evaluate the release of cfDNA from cultured cells and to gauge its potential use for elucidating the nature of cfDNA. Results suggest that the occurrence of cfDNA is not a consequence of apoptosis or necrosis, but primarily a result of actively secreted DNA, perhaps in association with a protein complex. This study demonstrates the potential of in vitro cell culture models to obtain useful information about the phenomenon of cfDNA.


Archives of Toxicology | 2017

Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins

Johannes F. Wentzel; Martani Lombard; Lissinda H. Du Plessis; Lizelle Zandberg

Abstract Mycotoxins are toxic secondary metabolites produced by a range of fungi and are common contaminants of agricultural crops. These toxins are chemically diverse and structurally stable, enabling them to enter the food chain which can lead to numerous adverse health effects in animals and humans. Although mycotoxin exposure is associated with the development of several cancers, it has proved challenging to show a direct connection between exposure and oncogenic change. This study investigates the in vitro cytotoxicity, molecular mechanisms and secondary signalling responses associated with the exposure to three major mycotoxins, fumonisin B1 (FB1), deoxynivalenol (Don) and zearalenone (Zea). The cytotoxicity of FB1, Don and Zea were investigated in cultured HepG2 and Caco-2 cells using cell viability assays as well as flow cytometry. FB1 proved to be less cytotoxic than its counterparts, while Don and Zea demonstrated high cytotoxicity through an apoptotic mechanism. Expression profiles of 84 genes involved in mediating communication between tumour cells and the cellular mediators of inflammation as well as the innate immune system were also studied. The expression profiles associated with the different mycotoxins were further explored for functional networks, biological functions, canonical pathways, toxicological association as well as to predict network associations between the differentially expressed genes. RT-qPCR revealed the significant differential expression of 46 genes, including the expression of several genes strongly associated with cancer and aberrant inflammatory signalling, after mycotoxin exposure. Aberrant inflammatory signalling seems to be a credible contributing factor that initiates the malignant change observed in cells exposed to mycotoxins.


Molecules | 2015

The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases

Angélique Lewies; Johannes F. Wentzel; Garmi Jacobs; Lissinda H. Du Plessis

Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.


Frontiers in Genetics | 2014

Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

Angélique Lewies; Etresia van Dyk; Johannes F. Wentzel; Pieter J. Pretorius

The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions.


International Journal of Pharmaceutics | 2017

Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity

Angélique Lewies; Johannes F. Wentzel; Anine Jordaan; Carlos C. Bezuidenhout; Lissinda H. Du Plessis

Antimicrobial resistance is an imminent threat to the effective prevention and treatment of bacterial infections and alternative antimicrobial strategies are desperately needed. Antimicrobial peptides (AMPs) may be promising alternatives to current antibiotics or act as adjuvants to enhance antibiotic potency. Additionally, the use of biodegradable lipid nanoparticles can enhance the antibacterial activity of antibiotics and antimicrobial peptides. In this study, the interaction of the AMPs, nisin Z and melittin, with conventional antibiotics was investigated on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. The effectiveness of nanostructured lipid carriers (NLCs) for the entrapment of nisin Z was also evaluated. Findings revealed that nisin Z exhibited additive interactions with numerous conventional antibiotics. Notable synergism was observed for novobiocin-nisin Z combinations. The addition of the non-antibiotic adjuvant EDTA significantly improved the antimicrobial activity of free nisin Z towards E.coli. NLCs containing nisin Z were effective against Gram-positive species at physiological pH, with an increase in effectiveness in the presence of EDTA. Results indicate that nisin Z may be advantageous as an adjuvant in antimicrobial chemotherapy, while contributing in the battle against antibiotic resistance. NLCs have the potential to enhance the antibacterial activity of nisin Z towards Gram-positive bacterial species associated with skin infections.


Clinical Biochemistry | 2016

Reference gene selection for in vitro cell-free DNA analysis and gene expression profiling

Abel Jacobus Bronkhorst; Janine Aucamp; Johannes F. Wentzel; Piet J. Pretorius

OBJECTIVES (i) To optimize cell-free DNA (cfDNA) and mRNA quantification using eight housekeeping genes (HKGs), (ii) to determine if there is a difference in the occurrence of HKGs in the cfDNA and mRNA of normal cells and cancer cells, and (iii) to investigate whether there is some selectivity involved in the release of cfDNA. DESIGN AND METHODS cfDNA was isolated directly from the growth medium of 3 cultured cancer cell lines and one non-malignant, primary cell line. At the same time interval, mRNA was isolated from these cells and cDNA was synthesized. CfDNA and cDNA were then amplified with real-time PCR utilizing eight different HKGs. RESULTS For all cell lines tested, Beta-actin (ACTB) is the most appropriate HKG to use as a control for cfDNA and mRNA quantification. There was no clear difference in the occurrence of HKGs between cancer cells and healthy cells. Lastly, there is a consistent and distinct difference between the mRNA expression and cfDNA of all cell lines. CONCLUSIONS This study reveals a new candidate HKG for a robust control in cfDNA analysis and gene expression profiling, and should be considered for optimal analysis. Furthermore, results indicate that cfDNA is selectively released from cells into culture medium.


Expert Opinion on Therapeutic Targets | 2017

Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors

Clarissa Willers; Johannes F. Wentzel; Lissinda H. Du Plessis; Chrisna Gouws; Josias H. Hamman

ABSTRACT Introduction: Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.


Infection, Genetics and Evolution | 2013

Consensus sequence determination and elucidation of the evolutionary history of a rotavirus Wa variant reveal a close relationship to various Wa variants derived from the original Wa strain

Johannes F. Wentzel; Lijuan Yuan; Shujing Rao; Alberdina A. van Dijk; Hester G. O’Neill

The consensus nucleotide sequence of a human rotavirus Wa strain, with only a partially known passage history, was determined with sequence-independent amplification and next generation 454® pyrosequencing. This rotavirus Wa strain had the expected genome constellation of G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and was designated RVA/Human-tc/USA/WaCS/1974/G1P[8]. Phylogenetic analyses revealed a close relationship to four human rotavirus Wa variants (Wag5re, Wag7/8re, ParWa and VirWa) derived from the original 1974 human isolate. There were rearrangements in the Wag5re- and Wag7/8re variants in genome segments 5 (Wag5re) and 7 and 8 (Wag7/8re), which were not present in WaCS. Pairwise comparisons and a combined molecular clock for the Wa rotavirus genome indicated a close relationship between WaCS and ParWa and VirWa. These results suggest that WaCS is most probably an early cell culture adapted variant from the initial gnotobiotic pig passaged Wa isolate. Evolutionary pressure analysis identified a possible negative selected amino acid site in VP1 (genome segment 1) and a likely positive selected site in VP4 (genome segment 4). The WaCS may be more appropriate as a rotavirus Wa reference sequence than the current composite Wa reference genome.


Bioorganic & Medicinal Chemistry Letters | 2017

Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives

Christo de Lange; Dina Coertzen; Frans J. Smit; Johannes F. Wentzel; Ho Ning Wong; Lyn-Marie Birkholtz; Richard K. Haynes; David D. N'Da

Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.

Collaboration


Dive into the Johannes F. Wentzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge