Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Grillari is active.

Publication


Featured researches published by Johannes Grillari.


Diabetes | 1995

High-Glucose–Triggered Apoptosis in Cultured Endothelial Cells

Sabina Baumgartner-Parzer; Ludwig Wagner; Maria Pettermann; Johannes Grillari; Alois Gessl; Werner Waldhäusl

High ambient glucose concentration, linked to vascular complications in diabetes in vivo, modulates mRNA expression of fibronectin, collagen, tissue-type plasminogen activator, and plasminogen activator inhibitor and induces delayed replication and excess cell death in cultured vascular endothelial cells. To determine the role of high ambient glucose (30 mmol/1) in apoptosis, paired cultures of individual isolates of human umbilical vein endothelial cells (HUVECs) were exposed to both high (30 mmol/1) and low (5 mmol/1) concentrations of glucose for short-term (24, 48, and 72 h) and long-term (13 ± 1 days) experiments. Incubation of HUVECs with high glucose for >48 h increased DNA fragmentation (13.7 ± 6.5% of total DNA, mean ± SD) versus cultures kept in 5 mmol/1 glucose (10.9 ± 5.6%, P < 0.005), as measured by [3H]thymidine assays. Data were confirmed by apoptosis-specific fluorescence-activated cell sorter analysis of confluent HUVEC cultures, which displayed after long-term exposure to 30 mmol/1 glucose a 1.5-fold higher prevalence of apoptosis than control cultures exposed to 5 mmol/1 glucose (P < 0.005). In contrast, no increase in DNA fragmentation in response to 30 mmol/1 glucose was seen for standardized cell lines (K 562, P 815, YT) and fibroblasts. Expression of clusterin mRNA, originally reported to be a molecular marker of apoptosis, was only slightly affected by short-term (24-h) high-glucose exposure but was significantly reduced after long-term incubation in 30 mmol/1 glucose (82.2 ± 13.8% of control) versus 5 mmol/1 glucose, which questions the role of clusterin gene expression as a marker of apoptosis. The results demonstrate that high ambient glucose can promote apoptosis in HUVECs in vitro and suggest potential endothelial damage by hyperglycemia in diabetic patients.


Nature Protocols | 2012

Generation of human induced pluripotent stem cells from urine samples

Ting Zhou; Christina Benda; Sarah Dunzinger; Yinghua Huang; Jenny Cy Ho; Jiayin Yang; Yu Wang; Ya Zhang; Qiang Zhuang; Yanhua Li; Xichen Bao; Hung-Fat Tse; Johannes Grillari; Regina Grillari-Voglauer; Duanqing Pei; Miguel A. Esteban

Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet, acquiring donor cells is, in most instances, an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances, as the isolation of urinary cells is simple (30 ml of urine are sufficient), cost-effective and universal (can be applied to any age, gender and race). Moreover, the entire procedure is reasonably quick—around 2 weeks for the urinary cell culture and 3–4 weeks for the reprogramming—and the yield of iPSC colonies is generally high—up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential, and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.


Aging Cell | 2010

miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging.

Matthias Hackl; Stefan Brunner; Klaus Fortschegger; Carina Schreiner; Lucia Micutkova; Christoph Mück; Gerhard Laschober; Günter Lepperdinger; Natalie Sampson; Peter Berger; Dietmar Herndler-Brandstetter; Matthias Wieser; Harald Kühnel; Alois Strasser; Mark Rinnerthaler; Michael Breitenbach; Michael Mildner; Leopold Eckhart; Erwin Tschachler; Andrea Trost; Johann W. Bauer; Christine Papak; Zlatko Trajanoski; Marcel Scheideler; Regina Grillari-Voglauer; Beatrix Grubeck-Loebenstein; Pidder Jansen-Dürr; Johannes Grillari

Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non‐coding miRNAs are potent post‐transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age‐related and senescence‐related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid‐based miRNA microarrays, we identified four commonly regulated miRNAs, miR‐17 down‐regulated in all seven; miR‐19b and miR‐20a, down‐regulated in six models; and miR‐106a down‐regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.


Journal of The American Society of Nephrology | 2011

Generation of induced pluripotent stem cells from urine

Ting Zhou; Christina Benda; Sarah Duzinger; Yinghua Huang; Xingyan Li; Yanhua Li; Xiangpeng Guo; Guokun Cao; Shen Chen; Lili Hao; Ys Chan; Kwong-Man Ng; Jenny Cy Ho; Matthias Wieser; Jiayan Wu; Heinz Redl; Hung-Fat Tse; Johannes Grillari; Regina Grillari-Voglauer; Duanqing Pei; Miguel A. Esteban

Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.


American Journal of Physiology-renal Physiology | 2008

hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics

Matthias Wieser; Guido Stadler; Paul Jennings; Berthold Streubel; Walter Pfaller; Peter Ambros; Claus R. Riedl; Hermann Katinger; Johannes Grillari; Regina Grillari-Voglauer

Telomere-dependent replicative senescence is one of the mechanisms that limit the number of population doublings of normal human cells. By overexpression of telomerase, cells of various origins have been successfully immortalized without changing the phenotype. While a limited number of telomerase-immortalized cells of epithelial origin are available, none of renal origin has been reported so far. Here we have established simple and safe conditions that allow serial passaging of renal proximal tubule epithelial cells (RPTECs) until entry into telomere-dependent replicative senescence. As reported for other cells, senescence of RPTECs is characterized by arrest in G1 phase, shortened telomeres, staining for senescence-associated beta-galactosidase, and accumulation of gamma-H2AX foci. Furthermore, ectopic expression of the catalytic subunit of telomerase (TERT) was sufficient to immortalize these cells. Characterization of immortalized RPTEC/TERT1 cells shows characteristic morphological and functional properties like formation of tight junctions and domes, expression of aminopeptidase N, cAMP induction by parathyroid hormone, sodium-dependent phosphate uptake, and the megalin/cubilin transport system. No genomic instability within up to 90 population doublings has been observed. Therefore, these cells are proposed as a valuable model system not only for cell biology but also for toxicology, drug screening, biogerontology, as well as tissue engineering approaches.


Biogerontology | 2010

miR-17-92 cluster: ups and downs in cancer and aging.

Johannes Grillari; Matthias Hackl; Regina Grillari-Voglauer

The miR-17–92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17–92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17–92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans.


Journal of Biotechnology | 2011

Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing.

Jennifer Becker; Matthias Hackl; Oliver Rupp; Tobias Jakobi; Jessica Schneider; Rafael Szczepanowski; Thomas Bekel; Nicole Borth; Alexander Goesmann; Johannes Grillari; Christian Kaltschmidt; Thomas Noll; Alfred Pühler; Andreas Tauch; Karina Brinkrolf

The pyrosequencing technology from 454 Life Sciences and a novel assembly approach for cDNA sequences with the Newbler Assembler were used to achieve a major step forward to unravel the transcriptome of Chinese hamster ovary (CHO) cells. Normalized cDNA libraries originating from several cell lines and diverse culture conditions were sequenced and the resulting 1.84 million reads were assembled into 32,801 contiguous sequences, 29,184 isotigs, and 24,576 isogroups. A taxonomic classification of the isotigs showed that more than 70% of the assembled data is most similar to the transcriptome of Mus musculus, with most of the remaining isotigs being homologous to DNA sequences from Rattus norvegicus. Mapping of the CHO cell line contigs to the mouse transcriptome demonstrated that 9124 mouse transcripts, representing 6701 genes, are covered by more than 95% of their sequence length. Metabolic pathways of the central carbohydrate metabolism and biosynthesis routes of sugars used for protein N-glycosylation were reconstructed from the transcriptome data. All relevant genes representing major steps in the N-glycosylation pathway of CHO cells were detected. The present manuscript represents a data set of assembled and annotated genes for CHO cells that can now be used for a detailed analysis of the molecular functioning of CHO cell lines.


Experimental Gerontology | 2000

Subtractive Hybridization of mRNA from early passage and senescent endothelial cells

Johannes Grillari; Otmar Hohenwarter; Reingard Grabherr; Hermann Katinger

Regulation of cellular processes that eventually lead to a state of growth arrest is an important manifestation of in vitro cellular senescence caused and accompanied by variations of the gene expression pattern. Whereas these changes at the mRNA level have been studied mainly in fibroblast cultures, we concentrated on endothelial cells that represent an accepted model for vascular systems and may be involved in the pathogenesis of diseases related to aging. To isolate differentially expressed genes, we created a subtractive cDNA library using mRNA from senescent (35 passages) and young (five passages) human umbilical vein endothelial cells (HUVECs). Candidate clones were isolated from the cDNA library, differential expression was confirmed by Northern blot analyses and sequences were compared with a genbank data base. Because many mRNAs were below the detection limit of Northern blot analysis, we were forced to establish a more sensitive PCR based method (ATAC-PCR) to quantify and confirm altered levels of gene expression. Several mRNAs were found to be upregulated in senescent HUVECs including two components of the extracellular matrix (ECM): plasminogen activator inhibitor and fibronectin. Elevated expression of both has already been described in senescent cells. The mRNAs of TGF-beta-inducible gene H3 (beta-IG-H3; ECM protein), insulin-like growth factor binding protein (IGFBP-3), p53-inducible gene (PIG3) a protein involved in vesicular transport (SEC13R) and ribosomal protein L28 have likewise been shown to be preferentially expressed in senescent cells. Because studies support the involvement of ECM components, TGF-beta and p53 in tumor suppressing mechanisms, our data supports the hypothesis that cellular senescence and upregulation of ECM proteins may be associated with tumor preventive functions.


Stem Cells | 2014

MicroRNA‐26 Family Is Required for Human Adipogenesis and Drives Characteristics of Brown Adipocytes

Michael Karbiener; Didier F. Pisani; Andrea Frontini; Lisa M. Oberreiter; Eleonore Lang; Alexandros Vegiopoulos; Karin Mössenböck; Gerwin A. Bernhardt; Torsten Mayr; Florian Hildner; Johannes Grillari; Gérard Ailhaud; Stephan Herzig; Saverio Cinti; Ez-Zoubir Amri; Marcel Scheideler

Adipose tissue contains thermogenic adipocytes (i.e., brown and brite/beige) that oxidize nutrients at exceptionally high rates via nonshivering thermogenesis. Its recent discovery in adult humans has opened up new avenues to fight obesity and related disorders such as diabetes. Here, we identified miR‐26a and ‐26b as key regulators of human white and brite adipocyte differentiation. Both microRNAs are upregulated in early adipogenesis, and their inhibition prevented lipid accumulation while their overexpression accelerated it. Intriguingly, miR‐26a significantly induced pathways related to energy dissipation, shifted mitochondrial morphology toward that seen in brown adipocytes, and promoted uncoupled respiration by markedly increasing the hallmark protein of brown fat, uncoupling protein 1. By combining in silico target prediction, transcriptomics, and an RNA interference screen, we identified the sheddase ADAM metallopeptidase domain 17 (ADAM17) as a direct target of miR‐26 that mediated the observed effects on white and brite adipogenesis. These results point to a novel, critical role for the miR‐26 family and its downstream effector ADAM17 in human adipocyte differentiation by promoting characteristics of energy‐dissipating thermogenic adipocytes. Stem Cells 2014;32:1578–1590


Trends in Biotechnology | 2008

MicroRNAs as targets for engineering of CHO cell factories

Dethardt Müller; Hermann Katinger; Johannes Grillari

MicroRNAs (miRNAs) are strongly implicated in the global regulation of gene expression, and, in this regard, they consequently affect metabolic pathways on every regulatory level in different species. This characteristic makes miRNAs a promising target for cell engineering, and they could have multiple applications in medicine and biotechnology. However, a more profound, mechanistic understanding of miRNA action is needed for their potential to be translated into the development of industrially relevant cell factories with novel features. Here, we highlight the potential of miRNAs for the engineering of Chinese hamster ovary (CHO) cells, these being the most prevalent cell factory system for biopharmaceutical production. A key advantage of miRNAs, in contrast to most cell-engineering approaches that rely on overexpression of regulatory proteins, is that they do not compete for the translational machinery that is required to express the recombinant product. However, we also summarize the limitations and challenges that will have to be overcome to exploit fully miRNA technology.

Collaboration


Dive into the Johannes Grillari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erwin Tschachler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Florian Gruber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marcel Scheideler

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Fortschegger

Community College of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Redl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Schraml

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Marie-Sophie Narzt

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge