Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Hanika is active.

Publication


Featured researches published by Johannes Hanika.


international conference on computer graphics and interactive techniques | 2014

The natural-constraint representation of the path space for efficient light transport simulation

Anton S. Kaplanyan; Johannes Hanika; Carsten Dachsbacher

The path integral formulation of light transport is the basis for (Markov chain) Monte Carlo global illumination methods. In this paper we present half vector space light transport (HSLT), a novel approach to sampling and integrating light transport paths on surfaces. The key is a partitioning of the path space into subspaces in which a path is represented by its start and end point constraints and a sequence of generalized half vectors. We show that this representation has several benefits. It enables importance sampling of all interactions along paths in between two endpoints. Based on this, we propose a new mutation strategy, to be used with Markov chain Monte Carlo methods such as Metropolis light transport (MLT), which is well-suited for all types of surface transport paths (diffuse/glossy/specular interaction). One important characteristic of our approach is that the Fourier-domain properties of the path integral can be easily estimated. These can be used to achieve optimal correlation of the samples due to well-chosen mutation step sizes, leading to more efficient exploration of light transport features. We also propose a novel approach to control stratification in MLT with our mutation strategy.


international conference on computer graphics and interactive techniques | 2016

Multiple-scattering microfacet BSDFs with the Smith model

Eric Heitz; Johannes Hanika; Eugene d'Eon; Carsten Dachsbacher

Modeling multiple scattering in microfacet theory is considered an important open problem because a non-negligible portion of the energy leaving rough surfaces is due to paths that bounce multiple times. In this paper we derive the missing multiple-scattering components of the popular family of BSDFs based on the Smith microsurface model. Our derivations are based solely on the original assumptions of the Smith model. We validate our BSDFs using raytracing simulations of explicit random Beckmann surfaces. Our main insight is that the microfacet theory for surfaces with the Smith model can be derived as a special case of the microflake theory for volumes, with additional constraints to enforce the presence of a sharp interface, i.e. to transform the volume into a surface. We derive new free-path distributions and phase functions such that plane-parallel scattering from a microvolume with these distributions exactly produces the BSDF based on the Smith microsurface model, but with the addition of higher-order scattering. With this new formulation, we derive multiple-scattering micro-facet BSDFs made of either diffuse, conductive, or dielectric material. Our resulting BSDFs are reciprocal, energy conserving, and support popular anisotropic parametric normal distribution functions such as Beckmann and GGX. While we do not provide closed-form expressions for the BSDFs, they are mathematically well-defined and can be evaluated at arbitrary precision. We show how to practically use them with Monte Carlo physically based rendering algorithms by providing analytic importance sampling and unbiased stochastic evaluation. Our implementation is analytic and does not use per-BSDF precomputed data, which makes our BSDFs usable with textured albedos, roughness, and anisotropy.


eurographics | 2014

Hero wavelength spectral sampling

Alexander Wilkie; Sehera Nawaz; Marc Droske; Andrea Weidlich; Johannes Hanika

We present a spectral rendering technique that offers a compelling set of advantages over existing approaches. The key idea is to propagate energy along paths for a small, constant number of changing wavelengths. The first of these, the hero wavelength, is randomly sampled for each path, and all directional sampling is solely based on it. The additional wavelengths are placed at equal distances from the hero wavelength, so that all path wavelengths together always evenly cover the visible range.


Computer Graphics Forum | 2014

Efficient Monte Carlo rendering with realistic lenses

Johannes Hanika; Carsten Dachsbacher

In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match ground‐truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both sides. Our results show that this yields converged images significantly faster than previous methods and accurately renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and show how it can provide information needed for sophisticated light transport algorithms.


eurographics | 2015

Physically meaningful rendering using tristimulus colours

Johannes Meng; Florian Simon; Johannes Hanika; Carsten Dachsbacher

In photorealistic image synthesis the radiative transfer equation is often not solved by simulating every wavelength of light, but instead by computing tristimulus transport, for instance using sRGB primaries as a basis. This choice is convenient, because input texture data is usually stored in RGB colour spaces. However, there are problems with this approach which are often overlooked or ignored. By comparing to spectral reference renderings, we show how rendering in tristimulus colour spaces introduces colour shifts in indirect light, violation of energy conservation, and unexpected behaviour in participating media.


Computer Graphics Forum | 2015

Rich-VPLs for Improving the Versatility of Many-Light Methods

Florian Simon; Johannes Hanika; Carsten Dachsbacher

Many‐light methods approximate the light transport in a scene by computing the direct illumination from many virtual point light sources (VPLs), and render low‐noise images covering a wide range of performance and quality goals. However, they are very inefficient at representing glossy light transport. This is because a VPL on a glossy surface illuminates a small fraction of the scene only, and a tremendous number of VPLs might be necessary to render acceptable images. In this paper, we introduce Rich‐VPLs which, in contrast to standard VPLs, represent a multitude of light paths and thus have a more widespread emission profile on glossy surfaces and in scenes with multiple primary light sources. By this, a single Rich‐VPL contributes to larger portions of a scene with negligible additional shading cost. Our second contribution is a placement strategy for (Rich‐)VPLs proportional to sensor importance times radiance. Although both Rich‐VPLs and improved placement can be used individually, they complement each other ideally and share interim computation. Furthermore, both complement existing many‐light methods, e.g. Lightcuts or the Virtual Spherical Lights method, and can improve their efficiency as well as their application for scenes with glossy materials and many primary light sources.


eurographics | 2015

Improved Half Vector Space Light Transport

Johannes Hanika; Anton S. Kaplanyan; Carsten Dachsbacher

In this paper, we present improvements to half vector space light transport (HSLT) [ KHD14 ], which make this approach more practical, robust for difficult input geometry, and faster. Our first contribution is the computation of half vector space ray differentials in a different domain than the original work. This enables a more uniform stratification over the image plane during Markov chain exploration. Furthermore, we introduce a new multi chain perturbation in half vector space, which, if combined appropriately with half vector perturbation, makes the mutation strategy both more robust to geometric configurations with fine displacements and faster due to reduced number of ray casts. We provide and analyze the results of improved HSLT and discuss possible applications of our new half vector ray differentials.


eurographics | 2016

Sparse high-degree polynomials for wide-angle lenses

Emanuel Schrade; Johannes Hanika; Carsten Dachsbacher

Rendering with accurate camera models greatly increases realism and improves the match of synthetic imagery to real‐life footage. Photographic lenses can be simulated by ray tracing, but the performance depends on the complexity of the lens system, and some operations required for modern algorithms, such as deterministic connections, can be difficult to achieve. We generalise the approach of polynomial optics, i.e. expressing the light field transformation from the sensor to the outer pupil using a polynomial, to work with extreme wide angle (fisheye) lenses and aspherical elements. We also show how sparse polynomials can be constructed from the large space of high‐degree terms (we tested up to degree 15). We achieve this using a variant of orthogonal matching pursuit instead of a Taylor series when computing the polynomials. We show two applications: photorealistic rendering using Monte Carlo methods, where we introduce a new aperture sampling technique that is suitable for light tracing, and an interactive preview method suitable for rendering with deep images.


Computer Graphics Forum | 2018

Monte Carlo Methods for Volumetric Light Transport Simulation

Jan Novák; Iliyan Georgiev; Johannes Hanika; Wojciech Jarosz

The wide adoption of path‐tracing algorithms in high‐end realistic rendering has stimulated many diverse research initiatives. In this paper we present a coherent survey of methods that utilize Monte Carlo integration for estimating light transport in scenes containing participating media. Our work complements the volume‐rendering state‐of‐the‐art report by Cerezo et al. [ CPP*05 ]; we review publications accumulated since its publication over a decade ago, and include earlier methods that are key for building light transport paths in a stochastic manner. We begin by describing analog and non‐analog procedures for free‐path sampling and discuss various expected‐value, collision, and track‐length estimators for computing transmittance. We then review the various rendering algorithms that employ these as building blocks for path sampling. Special attention is devoted to null‐collision methods that utilize fictitious matter to handle spatially varying densities; we import two “next‐flight” estimators originally developed in nuclear sciences. Whenever possible, we draw connections between image‐synthesis techniques and methods from particle physics and neutron transport to provide the reader with a broader context.


ACM Transactions on Graphics | 2017

Fusing state spaces for markov chain Monte Carlo rendering

Hisanari Otsu; Anton S. Kaplanyan; Johannes Hanika; Carsten Dachsbacher; Toshiya Hachisuka

Rendering algorithms using Markov chain Monte Carlo (MCMC) currently build upon two different state spaces. One of them is the path space, where the algorithms operate on the vertices of actual transport paths. The other state space is the primary sample space, where the algorithms operate on sequences of numbers used for generating transport paths. While the two state spaces are related by the sampling procedure of transport paths, all existing MCMC rendering algorithms are designed to work within only one of the state spaces. We propose a first framework which provides a comprehensive connection between the path space and the primary sample space. Using this framework, we can use mutation strategies designed for one space with mutation strategies in the respective other space. As a practical example, we take a combination of manifold exploration and multiplexed Metropolis light transport using our framework. Our results show that the simultaneous use of the two state spaces improves the robustness of MCMC rendering. By combining efficient local exploration in the path space with global jumps in primary sample space, our method achieves more uniform convergence as compared to using only one space.

Collaboration


Dive into the Johannes Hanika's collaboration.

Top Co-Authors

Avatar

Carsten Dachsbacher

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Florian Simon

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Meng

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Emanuel Schrade

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Schüssler

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Wilkie

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Andrea Weidlich

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge