Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Hjorth is active.

Publication


Featured researches published by Johannes Hjorth.


The Journal of Neuroscience | 2010

Dynamics of Synaptic Transmission between Fast-Spiking Interneurons and Striatal Projection Neurons of the Direct and Indirect Pathways

Henrike Planert; Susanne N. Szydlowski; Johannes Hjorth; Sten Grillner; Gilad Silberberg

The intrastriatal microcircuit is a predominantly inhibitory GABAergic network comprised of a majority of projection neurons [medium spiny neurons (MSNs)] and a minority of interneurons. The connectivity within this microcircuit is divided into two main categories: lateral connectivity between MSNs, and inhibition mediated by interneurons, in particular fast spiking (FS) cells. To understand the operation of striatum, it is essential to have a good description of the dynamic properties of these respective pathways and how they affect different types of striatal projection neurons. We recorded from neuronal pairs, triplets, and quadruplets in slices of rat and mouse striatum and analyzed the dynamics of synaptic transmission between MSNs and FS cells. Retrograde fluorescent labeling and transgenic EGFP (enhanced green fluorescent protein) mice were used to distinguish between MSNs of the direct (striatonigral) and indirect (striatopallidal) pathways. Presynaptic neurons were stimulated with trains of action potentials, and activity-dependent depression and facilitation of synaptic efficacy was recorded from postsynaptic neurons. We found that FS cells provide a strong and homogeneously depressing inhibition of both striatonigral and striatopallidal MSN types. Moreover, individual FS cells are connected to MSNs of both types. In contrast, both MSN types receive sparse and variable, depressing and facilitating synaptic transmission from nearby MSNs. The connection probability was higher for pairs with presynaptic striatopallidal MSNs; however, the variability in synaptic dynamics did not depend on the types of interconnected MSNs. The differences between the two inhibitory pathways were clear in both species and at different developmental stages. Our findings show that the two intrastriatal inhibitory pathways have fundamentally different dynamic properties that are, however, similarly applied to both direct and indirect striatal projections.


Neuroinformatics | 2010

Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework

Mikael Djurfeldt; Johannes Hjorth; Jochen Martin Eppler; Niraj Dudani; Moritz Helias; Tobias C. Potjans; Upinder S. Bhalla; Markus Diesmann; Jeanette Hellgren Kotaleski; Örjan Ekeberg

MUSIC is a standard API allowing large scale neuron simulators to exchange data within a parallel computer during runtime. A pilot implementation of this API has been released as open source. We provide experiences from the implementation of MUSIC interfaces for two neuronal network simulators of different kinds, NEST and MOOSE. A multi-simulation of a cortico-striatal network model involving both simulators is performed, demonstrating how MUSIC can promote inter-operability between models written for different simulators and how these can be re-used to build a larger model system. Benchmarks show that the MUSIC pilot implementation provides efficient data transfer in a cluster computer with good scaling. We conclude that MUSIC fulfills the design goal that it should be simple to adapt existing simulators to use MUSIC. In addition, since the MUSIC API enforces independence of the applications, the multi-simulation could be built from pluggable component modules without adaptation of the components to each other in terms of simulation time-step or topology of connections between the modules.


The Journal of Neuroscience | 2009

Gap Junctions between Striatal Fast-Spiking Interneurons Regulate Spiking Activity and Synchronization as a Function of Cortical Activity

Johannes Hjorth; Kim T. Blackwell; Jeanette Hellgren Kotaleski

Striatal fast-spiking (FS) interneurons are interconnected by gap junctions into sparsely connected networks. As demonstrated for cortical FS interneurons, these gap junctions in the striatum may cause synchronized spiking, which would increase the influence that FS neurons have on spiking by the striatal medium spiny (MS) neurons. Dysfunction of the basal ganglia is characterized by changes in synchrony or periodicity, thus gap junctions between FS interneurons may modulate synchrony and thereby influence behavior such as reward learning and motor control. To explore the roles of gap junctions on activity and spike synchronization in a striatal FS population, we built a network model of FS interneurons. Each FS connects to 30–40% of its neighbors, as found experimentally, and each FS interneuron in the network is activated by simulated corticostriatal synaptic inputs. Our simulations show that the proportion of synchronous spikes in FS networks with gap junctions increases with increased conductance of the electrical synapse; however, the synchronization effects are moderate for experimentally estimated conductances. Instead, the main tendency is that the presence of gap junctions reduces the total number of spikes generated in response to synaptic inputs in the network. The reduction in spike firing is due to shunting through the gap junctions; which is minimized or absent when the neurons receive coincident inputs. Together these findings suggest that a population of electrically coupled FS interneurons may function collectively as input detectors that are especially sensitive to synchronized synaptic inputs received from the cortex.


Frontiers in Systems Neuroscience | 2011

Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact

Andreas Klaus; Henrike Planert; Johannes Hjorth; Joshua D. Berke; Gilad Silberberg; Jeanette Hellgren Kotaleski

In the striatal microcircuit, fast-spiking (FS) interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS) projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.


Neurocomputing | 2007

The significance of gap junction location in striatal fast spiking interneurons

Johannes Hjorth; Alex Hanna Elias; Jeanette Hellgren Kotaleski

Fast spiking (FS) interneurons in the striatum are hypothesised to control spike timing in the numerous medium spiny (MS) projection neurons by inhibiting or delaying firing in the MS neurons. The FS neurons are connected to each other through electrical gap junctions. This might synchronise the FS neurons, leading to increased influence on target neurons. Here, we explore the possible difference between proximal and distal gap junction locations. Somatic and distal dendritic gap junctions with equal effective coupling coefficient, as defined for steady-state somatic inputs, showed significantly different effective coupling coefficient with transient inputs. However, the ability to synchronise spiking in pairwise coupled FS neurons, which received synaptic inputs as during striatal up-state periods, was as effective with distal gap junctions as with proximal ones. Proximal gap junctions, however, caused synchronisation within a more precise time window.


communications and networking symposium | 2008

GABAergic control of backpropagating action potentials in striatal medium spiny neurons

Johannes Hjorth; Misha Zilberter; Rodrigo F. Oliveira; Kim T. Blackwell; Jeanette Hellgren Kotaleski

Experiments have demonstrated the ability of action potentials to actively backpropagate in striatal medium spiny (MS) neurons, affecting the calcium levels in the dendrites[1-3]. Increased calcium levels trigger changes in plasticity[4,5], which is important for learning and other functions[6]. Studies in the hippocampus have shown that GABAergic input can modulate the backpropagation of action potentials from the soma to the distal dendrites[7]. The MS neurons receive both proximal feedforward GABAergic inhibition from fast spiking interneurons (FS), and distal feedback inhibition from other neighbouring MS neurons. In the present study the effect of these GABAergic inputs on the dendritic calcium dynamics is investigated.


communications and networking symposium | 2009

The influence of subthreshold membrane potential oscillations and GABAergic input on firing activity in striatal fast-spiking neurons

Andreas Klaus; Johannes Hjorth; Jeanette Hellgren-Kotaleski

The striatum is the main input stage of the basal ganglia system, which is involved in executive functions of the forebrain, such as the planning and the selection of motor behavior. Feedforward inhibition of medium-sized spiny projection neurons in the striatum by fast-spiking interneurons is supposed to be an important determinant of controlling striatal output to later stages of the basal ganglia[1]. Striatal fast-spiking interneurons, which constitute approximately 1–2% of all striatal neurons, show many similarities to cortical fast-spiking cells. In response to somatic current injection, for example, some of these neurons exhibit spike bursts with a variable number of action potentials (so called stuttering)[2-4]. Interestingly, the membrane potential between such stuttering episodes oscillates in the range of 20–100 Hz[3,5]. The first spike of each stuttering episode invariably occurs at a peak of the underlying subthreshold oscillation. In both cortex and striatum, fast-spiking cells are inter-connected by gap junctions[6,7]. In vitro measurements as well as theoretical studies indicate that electrical coupling via gap junctions might be able to promote synchronous activity among these neurons[6,8]. Here we investigate the possible role of subthreshold oscillations on the synchronization of sub- and suprathreshold activity in a model of electrically coupled fast-spiking neurons. We use the model of Golomb et al.[3], which we extended with a dendritic tree so as to be able to simulate distal synaptic input. We show that gap junctions are able to synchronize subthreshold membrane potential fluctuations in response to somatic current injection. However, the oscillations are only prevalent in the subthreshold range and therefore require enough membrane potential depolarization[5]. In response to synaptic input, our model neuron only enters the subthreshold oscillatory regime with AMPA and NMDA synapses located at distal dendrites. Proximal synaptic input leads to more random fluctuations of the membrane potential, reflecting a smaller extent of dendritic filtering of the Poisson-distributed postsynaptic potentials. We furthermore investigate the effect of GABAergic (i.e. inhibitory) input to the model of the fast-spiking neuron and predict that inhibitory input is able to induce a stuttering episode in these cells. We finally discuss our results in the context of the feedforward inhibitory network, which is likely to play an important role in striatal and basal ganglia function.


1st International Conference on Cognitive Neurodynamics Shanghai, PEOPLES R CHINA, NOV 17-21, 2007 | 2008

Synchronization Effects in Networks of Striatal Fast Spiking Interneurons – Role of Gap Junctions

Johannes Hjorth; Lennart Hedlund; Kim T. Blackwell; Jeanette Hellgren Kotaleski

Recent studies have found gap junctions between striatal fast spiking interneurons (FSN). Gap junctions between neocortical FSNs cause increased synchrony of firing in response to current injection, but the effect of gap junctions in response to synaptic input is unknown. To explore this issue, we built a network model of FSNs. Each FSN connects to 30–40% of its neighbours, as found experimentally, and each FSN in the network is activated by simulated up-state synaptic inputs. Simulation experiments show that the proportion of synchronous spikes in coupled FSNs increases with gap junction conductance. Proximal gap junctions increase the synchronization more than distal gap junctions. During up-states the synchronization effects in FSNs coupled pairwise with proximal gap junctions are small for experimentally estimated gap junction conductances; however, higher order correlations are significantly increased in larger FSN networks.


Frontiers in Neuroinformatics | 1970

The influence of stuttering properties for firing activity in pairs of electrically coupled striatal fast-spiking interneurons

Andreas Klaus; Johannes Hjorth; Jeanette Hellgren-Kotaleski

Large parts of the cortex and the thalamus project into the striatum,which serves as the input stage of the basal ganglia. Information isintegrated in the striatal neural network and then passed on, via themedium spiny (MS) projection neurons, to the output stages of thebasal ganglia. In addition to the MS neurons there are also severaltypes of interneurons in the striatum, such as the fast spiking (FS)interneurons. I focused my research on the FS neurons, which formstrong inhibitory synapses onto the MS neurons. These striatal FSneurons are sparsely connected by electrical synapses (gap junctions),which are commonly presumed to synchronise their activity.Computational modelling with the GENESIS simulator was used toinvestigate the effect of gap junctions on a network of synapticallydriven striatal FS neurons. The simulations predicted a reduction infiring frequency dependent on the correlation between synaptic inputsto the neighbouring neurons, but only a slight synchronisation. Thegap junction effects on modelled FS neurons showing sub-thresholdoscillations and stuttering behaviour confirm these results andfurther indicate that hyperpolarising inputs might regulate the onsetof stuttering.The interactions between MS and FS neurons were investigated byincluding a computer model of the MS neuron. The hypothesis was thatdistal GABAergic input would lower the amplitude of back propagatingaction potentials, thereby reducing the calcium influx in thedendrites. The model verified this and further predicted that proximalGABAergic input controls spike timing, but not the amplitude ofdendritic calcium influx after initiation.Connecting models of neurons written in different simulators intonetworks raised technical problems which were resolved by integratingthe simulators within the MUSIC framework. This thesis discusses theissues encountered by using this implementation and gives instructionsfor modifying MOOSE scripts to use MUSIC and provides guidelines forachieving compatibility between MUSIC and other simulators.This work sheds light on the interactions between striatal FS and MSneurons. The quantitative results presented could be used to developa large scale striatal network model in the future, which would beapplicable to both the healthy and pathological striatum.


IBAGS X | 2010

FS networks as population detectors of correlated input activity

Johannes Hjorth; Kim T. Blackwell; Jeanette Hellgren Kotaleski

Collaboration


Dive into the Johannes Hjorth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Hanna Elias

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anders Lansner

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Malin Sandström

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikael Djurfeldt

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge